Cargando…

Self-Assembled NBR/Nomex Nanofibers as Lightweight Rubbery Nonwovens for Hindering Delamination in Epoxy CFRPs

[Image: see text] Still today, concerns regarding delamination limit the widespread use of high-performance composite laminates, such as carbon fiber-reinforced polymers (CFRPs), to replace metals. Nanofibrous mat interleaving is a well-established approach to reduce delamination. However, nanomodif...

Descripción completa

Detalles Bibliográficos
Autores principales: Maccaferri, Emanuele, Mazzocchetti, Laura, Benelli, Tiziana, Brugo, Tommaso Maria, Zucchelli, Andrea, Giorgini, Loris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763375/
https://www.ncbi.nlm.nih.gov/pubmed/34939406
http://dx.doi.org/10.1021/acsami.1c17643
_version_ 1784633921112113152
author Maccaferri, Emanuele
Mazzocchetti, Laura
Benelli, Tiziana
Brugo, Tommaso Maria
Zucchelli, Andrea
Giorgini, Loris
author_facet Maccaferri, Emanuele
Mazzocchetti, Laura
Benelli, Tiziana
Brugo, Tommaso Maria
Zucchelli, Andrea
Giorgini, Loris
author_sort Maccaferri, Emanuele
collection PubMed
description [Image: see text] Still today, concerns regarding delamination limit the widespread use of high-performance composite laminates, such as carbon fiber-reinforced polymers (CFRPs), to replace metals. Nanofibrous mat interleaving is a well-established approach to reduce delamination. However, nanomodifications may strongly affect other laminate thermomechanical properties, especially if achieved by integrating soft materials. Here, this limitation is entirely avoided by using rubbery nitrile butadiene rubber (NBR)/Nomex mixed nanofibers: neither laminate stiffness nor glass-transition temperature (T(g)) lowering occurs upon CFRP nanomodification. Stable noncrosslinked nanofibers with up to 60% wt of NBR were produced via single-needle electrospinning, which were then morphologically, thermally, spectroscopically, and mechanically characterized. NBR and Nomex disposition in the nanofiber was investigated via selective removal of the sole rubber fraction, revealing the formation of particular self-assembled structures resembling quasi-core–shell nanofibers or fibril-like hierarchical structures, depending on the applied electrospinning conditions (1.10 and 0.20 mL/h, respectively). Mode I and Mode II loading tests show a significant improvement of the interlaminar fracture toughness of rubbery nanofiber-modified CFRPs, especially G(I) (up to +180%), while G(II) enhancement is less pronounced but still significant (+40% in the best case). The two nanofibrous morphologies (quasi-core–shell and fibril-like ones) improve the delamination resistance differently, also suggesting that the way the rubber is located in the nanofibers plays a role in the toughening action. The quasi-core–shell nanofiber morphology provides the best reinforcing action, besides the highest productivity. By contrast, pure Nomex nanofibers dramatically worsen the interlaminar fracture toughness (up to −70% in G(I)), acting as a release film. The achieved delamination resistance improvements, combined with the retention of both the original laminate stiffness and T(g), pave the way to the extensive and reliable application of NBR/Nomex rubbery nanofibrous mats in composite laminates.
format Online
Article
Text
id pubmed-8763375
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-87633752022-01-18 Self-Assembled NBR/Nomex Nanofibers as Lightweight Rubbery Nonwovens for Hindering Delamination in Epoxy CFRPs Maccaferri, Emanuele Mazzocchetti, Laura Benelli, Tiziana Brugo, Tommaso Maria Zucchelli, Andrea Giorgini, Loris ACS Appl Mater Interfaces [Image: see text] Still today, concerns regarding delamination limit the widespread use of high-performance composite laminates, such as carbon fiber-reinforced polymers (CFRPs), to replace metals. Nanofibrous mat interleaving is a well-established approach to reduce delamination. However, nanomodifications may strongly affect other laminate thermomechanical properties, especially if achieved by integrating soft materials. Here, this limitation is entirely avoided by using rubbery nitrile butadiene rubber (NBR)/Nomex mixed nanofibers: neither laminate stiffness nor glass-transition temperature (T(g)) lowering occurs upon CFRP nanomodification. Stable noncrosslinked nanofibers with up to 60% wt of NBR were produced via single-needle electrospinning, which were then morphologically, thermally, spectroscopically, and mechanically characterized. NBR and Nomex disposition in the nanofiber was investigated via selective removal of the sole rubber fraction, revealing the formation of particular self-assembled structures resembling quasi-core–shell nanofibers or fibril-like hierarchical structures, depending on the applied electrospinning conditions (1.10 and 0.20 mL/h, respectively). Mode I and Mode II loading tests show a significant improvement of the interlaminar fracture toughness of rubbery nanofiber-modified CFRPs, especially G(I) (up to +180%), while G(II) enhancement is less pronounced but still significant (+40% in the best case). The two nanofibrous morphologies (quasi-core–shell and fibril-like ones) improve the delamination resistance differently, also suggesting that the way the rubber is located in the nanofibers plays a role in the toughening action. The quasi-core–shell nanofiber morphology provides the best reinforcing action, besides the highest productivity. By contrast, pure Nomex nanofibers dramatically worsen the interlaminar fracture toughness (up to −70% in G(I)), acting as a release film. The achieved delamination resistance improvements, combined with the retention of both the original laminate stiffness and T(g), pave the way to the extensive and reliable application of NBR/Nomex rubbery nanofibrous mats in composite laminates. American Chemical Society 2021-12-23 2022-01-12 /pmc/articles/PMC8763375/ /pubmed/34939406 http://dx.doi.org/10.1021/acsami.1c17643 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Maccaferri, Emanuele
Mazzocchetti, Laura
Benelli, Tiziana
Brugo, Tommaso Maria
Zucchelli, Andrea
Giorgini, Loris
Self-Assembled NBR/Nomex Nanofibers as Lightweight Rubbery Nonwovens for Hindering Delamination in Epoxy CFRPs
title Self-Assembled NBR/Nomex Nanofibers as Lightweight Rubbery Nonwovens for Hindering Delamination in Epoxy CFRPs
title_full Self-Assembled NBR/Nomex Nanofibers as Lightweight Rubbery Nonwovens for Hindering Delamination in Epoxy CFRPs
title_fullStr Self-Assembled NBR/Nomex Nanofibers as Lightweight Rubbery Nonwovens for Hindering Delamination in Epoxy CFRPs
title_full_unstemmed Self-Assembled NBR/Nomex Nanofibers as Lightweight Rubbery Nonwovens for Hindering Delamination in Epoxy CFRPs
title_short Self-Assembled NBR/Nomex Nanofibers as Lightweight Rubbery Nonwovens for Hindering Delamination in Epoxy CFRPs
title_sort self-assembled nbr/nomex nanofibers as lightweight rubbery nonwovens for hindering delamination in epoxy cfrps
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763375/
https://www.ncbi.nlm.nih.gov/pubmed/34939406
http://dx.doi.org/10.1021/acsami.1c17643
work_keys_str_mv AT maccaferriemanuele selfassemblednbrnomexnanofibersaslightweightrubberynonwovensforhinderingdelaminationinepoxycfrps
AT mazzocchettilaura selfassemblednbrnomexnanofibersaslightweightrubberynonwovensforhinderingdelaminationinepoxycfrps
AT benellitiziana selfassemblednbrnomexnanofibersaslightweightrubberynonwovensforhinderingdelaminationinepoxycfrps
AT brugotommasomaria selfassemblednbrnomexnanofibersaslightweightrubberynonwovensforhinderingdelaminationinepoxycfrps
AT zucchelliandrea selfassemblednbrnomexnanofibersaslightweightrubberynonwovensforhinderingdelaminationinepoxycfrps
AT giorginiloris selfassemblednbrnomexnanofibersaslightweightrubberynonwovensforhinderingdelaminationinepoxycfrps