Cargando…
Enhanced Self-Assembled Monolayer Surface Coverage by ALD NiO in p-i-n Perovskite Solar Cells
[Image: see text] Metal halide perovskites have attracted tremendous attention due to their excellent electronic properties. Recent advancements in device performance and stability of perovskite solar cells (PSCs) have been achieved with the application of self-assembled monolayers (SAMs), serving a...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763377/ https://www.ncbi.nlm.nih.gov/pubmed/34936322 http://dx.doi.org/10.1021/acsami.1c15860 |
_version_ | 1784633921600749568 |
---|---|
author | Phung, Nga Verheijen, Marcel Todinova, Anna Datta, Kunal Verhage, Michael Al-Ashouri, Amran Köbler, Hans Li, Xin Abate, Antonio Albrecht, Steve Creatore, Mariadriana |
author_facet | Phung, Nga Verheijen, Marcel Todinova, Anna Datta, Kunal Verhage, Michael Al-Ashouri, Amran Köbler, Hans Li, Xin Abate, Antonio Albrecht, Steve Creatore, Mariadriana |
author_sort | Phung, Nga |
collection | PubMed |
description | [Image: see text] Metal halide perovskites have attracted tremendous attention due to their excellent electronic properties. Recent advancements in device performance and stability of perovskite solar cells (PSCs) have been achieved with the application of self-assembled monolayers (SAMs), serving as stand-alone hole transport layers in the p-i-n architecture. Specifically, phosphonic acid SAMs, directly functionalizing indium–tin oxide (ITO), are presently adopted for highly efficient devices. Despite their successes, so far, little is known about the surface coverage of SAMs on ITO used in PSCs application, which can affect the device performance, as non-covered areas can result in shunting or low open-circuit voltage. In this study, we investigate the surface coverage of SAMs on ITO and observe that the SAM of MeO-2PACz ([2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid) inhomogeneously covers the ITO substrate. Instead, when adopting an intermediate layer of NiO between ITO and the SAM, the homogeneity, and hence the surface coverage of the SAM, improve. In this work, NiO is processed by plasma-assisted atomic layer deposition (ALD) with Ni(MeCp)(2) as the precursor and O(2) plasma as the co-reactant. Specifically, the presence of ALD NiO leads to a homogeneous distribution of SAM molecules on the metal oxide area, accompanied by a high shunt resistance in the devices with respect to those with SAM directly processed on ITO. At the same time, the SAM is key to the improvement of the open-circuit voltage of NiO + MeO-2PACz devices compared to those with NiO alone. Thus, the combination of NiO and SAM results in a narrower distribution of device performance reaching a more than 20% efficient champion device. The enhancement of SAM coverage in the presence of NiO is corroborated by several characterization techniques including advanced imaging by transmission electron microscopy (TEM), elemental composition quantification by Rutherford backscattering spectrometry (RBS), and conductive atomic force microscopy (c-AFM) mapping. We believe this finding will further promote the usage of phosphonic acid based SAM molecules in perovskite PV. |
format | Online Article Text |
id | pubmed-8763377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-87633772022-01-18 Enhanced Self-Assembled Monolayer Surface Coverage by ALD NiO in p-i-n Perovskite Solar Cells Phung, Nga Verheijen, Marcel Todinova, Anna Datta, Kunal Verhage, Michael Al-Ashouri, Amran Köbler, Hans Li, Xin Abate, Antonio Albrecht, Steve Creatore, Mariadriana ACS Appl Mater Interfaces [Image: see text] Metal halide perovskites have attracted tremendous attention due to their excellent electronic properties. Recent advancements in device performance and stability of perovskite solar cells (PSCs) have been achieved with the application of self-assembled monolayers (SAMs), serving as stand-alone hole transport layers in the p-i-n architecture. Specifically, phosphonic acid SAMs, directly functionalizing indium–tin oxide (ITO), are presently adopted for highly efficient devices. Despite their successes, so far, little is known about the surface coverage of SAMs on ITO used in PSCs application, which can affect the device performance, as non-covered areas can result in shunting or low open-circuit voltage. In this study, we investigate the surface coverage of SAMs on ITO and observe that the SAM of MeO-2PACz ([2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid) inhomogeneously covers the ITO substrate. Instead, when adopting an intermediate layer of NiO between ITO and the SAM, the homogeneity, and hence the surface coverage of the SAM, improve. In this work, NiO is processed by plasma-assisted atomic layer deposition (ALD) with Ni(MeCp)(2) as the precursor and O(2) plasma as the co-reactant. Specifically, the presence of ALD NiO leads to a homogeneous distribution of SAM molecules on the metal oxide area, accompanied by a high shunt resistance in the devices with respect to those with SAM directly processed on ITO. At the same time, the SAM is key to the improvement of the open-circuit voltage of NiO + MeO-2PACz devices compared to those with NiO alone. Thus, the combination of NiO and SAM results in a narrower distribution of device performance reaching a more than 20% efficient champion device. The enhancement of SAM coverage in the presence of NiO is corroborated by several characterization techniques including advanced imaging by transmission electron microscopy (TEM), elemental composition quantification by Rutherford backscattering spectrometry (RBS), and conductive atomic force microscopy (c-AFM) mapping. We believe this finding will further promote the usage of phosphonic acid based SAM molecules in perovskite PV. American Chemical Society 2021-12-22 2022-01-12 /pmc/articles/PMC8763377/ /pubmed/34936322 http://dx.doi.org/10.1021/acsami.1c15860 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Phung, Nga Verheijen, Marcel Todinova, Anna Datta, Kunal Verhage, Michael Al-Ashouri, Amran Köbler, Hans Li, Xin Abate, Antonio Albrecht, Steve Creatore, Mariadriana Enhanced Self-Assembled Monolayer Surface Coverage by ALD NiO in p-i-n Perovskite Solar Cells |
title | Enhanced
Self-Assembled Monolayer Surface Coverage
by ALD NiO in p-i-n Perovskite Solar Cells |
title_full | Enhanced
Self-Assembled Monolayer Surface Coverage
by ALD NiO in p-i-n Perovskite Solar Cells |
title_fullStr | Enhanced
Self-Assembled Monolayer Surface Coverage
by ALD NiO in p-i-n Perovskite Solar Cells |
title_full_unstemmed | Enhanced
Self-Assembled Monolayer Surface Coverage
by ALD NiO in p-i-n Perovskite Solar Cells |
title_short | Enhanced
Self-Assembled Monolayer Surface Coverage
by ALD NiO in p-i-n Perovskite Solar Cells |
title_sort | enhanced
self-assembled monolayer surface coverage
by ald nio in p-i-n perovskite solar cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763377/ https://www.ncbi.nlm.nih.gov/pubmed/34936322 http://dx.doi.org/10.1021/acsami.1c15860 |
work_keys_str_mv | AT phungnga enhancedselfassembledmonolayersurfacecoveragebyaldnioinpinperovskitesolarcells AT verheijenmarcel enhancedselfassembledmonolayersurfacecoveragebyaldnioinpinperovskitesolarcells AT todinovaanna enhancedselfassembledmonolayersurfacecoveragebyaldnioinpinperovskitesolarcells AT dattakunal enhancedselfassembledmonolayersurfacecoveragebyaldnioinpinperovskitesolarcells AT verhagemichael enhancedselfassembledmonolayersurfacecoveragebyaldnioinpinperovskitesolarcells AT alashouriamran enhancedselfassembledmonolayersurfacecoveragebyaldnioinpinperovskitesolarcells AT koblerhans enhancedselfassembledmonolayersurfacecoveragebyaldnioinpinperovskitesolarcells AT lixin enhancedselfassembledmonolayersurfacecoveragebyaldnioinpinperovskitesolarcells AT abateantonio enhancedselfassembledmonolayersurfacecoveragebyaldnioinpinperovskitesolarcells AT albrechtsteve enhancedselfassembledmonolayersurfacecoveragebyaldnioinpinperovskitesolarcells AT creatoremariadriana enhancedselfassembledmonolayersurfacecoveragebyaldnioinpinperovskitesolarcells |