Cargando…
Telemetry Data Compression Algorithm Using Balanced Recurrent Neural Network and Deep Learning
Telemetric information is great in size, requiring extra room and transmission time. There is a significant obstruction of storing or sending telemetric information. Lossless data compression (LDC) algorithms have evolved to process telemetric data effectively and efficiently with a high compression...
Autores principales: | Ramalingam, Parameshwaran, Mehbodniya, Abolfazl, Webber, Julian L., Shabaz, Mohammad, Gopalakrishnan, Lakshminarayanan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763529/ https://www.ncbi.nlm.nih.gov/pubmed/35047035 http://dx.doi.org/10.1155/2022/4886586 |
Ejemplares similares
-
Biosensor-Assisted Method for Abdominal Syndrome Classification Using Machine Learning Algorithm
por: Gandhi, Charu, et al.
Publicado: (2022) -
Decision tree based ensemble machine learning model for the prediction of Zika virus T-cell epitopes as potential vaccine candidates
por: Bukhari, Syed Nisar Hussain, et al.
Publicado: (2022) -
Intertwined-pulse modulation for compressive data telemetry
por: Farsiani, Sirous, et al.
Publicado: (2022) -
Ensemble Machine Learning Model to Predict SARS-CoV-2 T-Cell Epitopes as Potential Vaccine Targets
por: Bukhari, Syed Nisar Hussain, et al.
Publicado: (2021) -
Machine Learning Techniques for the Prediction of B-Cell and T-Cell Epitopes as Potential Vaccine Targets with a Specific Focus on SARS-CoV-2 Pathogen: A Review
por: Bukhari, Syed Nisar Hussain, et al.
Publicado: (2022)