Cargando…

LDPCD: A Novel Method for Locally Differentially Private Community Detection

As one of the cores of data analysis in large social networks, community detection has become a hot research topic in recent years. However, user's real social relationship may be at risk of privacy leakage and threatened by inference attacks because of the semitrusted server. As a result, comm...

Descripción completa

Detalles Bibliográficos
Autor principal: Zhang, Zhejian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763540/
https://www.ncbi.nlm.nih.gov/pubmed/35047034
http://dx.doi.org/10.1155/2022/4080047
Descripción
Sumario:As one of the cores of data analysis in large social networks, community detection has become a hot research topic in recent years. However, user's real social relationship may be at risk of privacy leakage and threatened by inference attacks because of the semitrusted server. As a result, community detection in social graphs under local differential privacy has gradually aroused the interest of industry and academia. On the one hand, the distortion of user's real data caused by existing privacy-preserving mechanisms can have a serious impact on the mining process of densely connected local graph structure, resulting in low utility of the final community division. On the other hand, private community detection requires to use the results of multiple user-server interactions to adjust user's partition, which inevitably leads to excessive allocation of privacy budget and large error of perturbed data. For these reasons, a new community detection method based on the local differential privacy model (named LDPCD) is proposed in this paper. Due to the introduction of truncated Laplace mechanism, the accuracy of user perturbation data is improved. In addition, the community divisive algorithm based on extremal optimization (EO) is also refined to reduce the number of interactions between users and the server. Thus, the total privacy overhead is reduced and strong privacy protection is guaranteed. Finally, LDPCD is applied in two commonly used real-world datasets, and its advantage is experimentally validated compared with two state-of-the-art methods.