Cargando…
Data Mining in Employee Healthcare Detection Using Intelligence Techniques for Industry Development
BACKGROUND: Even in today's environment, when there is a plethora of information accessible, it may be difficult to make appropriate choices for one's well-being. Data mining, machine learning, and computational statistics are among the most popular arenas of training today, and they are a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763559/ https://www.ncbi.nlm.nih.gov/pubmed/35047155 http://dx.doi.org/10.1155/2022/6462657 |
_version_ | 1784633971486752768 |
---|---|
author | Mehbodniya, Abolfazl Khan, Ihtiram Raza Chakraborty, Sudeshna Karthik, M. Mehta, Kamakshi Ali, Liaqat Nuagah, Stephen Jeswinde |
author_facet | Mehbodniya, Abolfazl Khan, Ihtiram Raza Chakraborty, Sudeshna Karthik, M. Mehta, Kamakshi Ali, Liaqat Nuagah, Stephen Jeswinde |
author_sort | Mehbodniya, Abolfazl |
collection | PubMed |
description | BACKGROUND: Even in today's environment, when there is a plethora of information accessible, it may be difficult to make appropriate choices for one's well-being. Data mining, machine learning, and computational statistics are among the most popular arenas of training today, and they are all aimed at secondary empowered person in making good decisions that will maximize the outcome of whatever working area they are involved with. Because the degree of rise in the number of patient roles is directly related to the rate of people growth and lifestyle variations, the healthcare sector has a significant need for data processing services. When it comes to cancer, the prognosis is an expression that relates to the possibility of the patient surviving in general, but it may also be used to describe the severity of the sickness as it will present itself in the patient's future timeline. Methodology. The proposed technique consists of three stages: input data acquisition, preprocessing, and classification. Data acquisition consists of input raw data which is followed by preprocessing to eliminate the missed data and the classification is carried out using ensemble classifier to analyze the stages of cancer. This study explored the combined influence of the prominent labels in conjunction with one another utilizing the multilabel classifier approach, which is successful. Finally, an ensemble classifier model has been constructed and experimentally validated to increase the accuracy of the classifier model, which has been previously shown. The entire performance of the recommended and tested models demonstrates a steady development of 2% to 6% over the baseline presentation on the baseline performance. RESULTS: Providing a good contribution to the general health welfare of noncommercial potential workers in the healthcare sector is an opportunity provided by this recommended job outcome. It is anticipated that alternative solutions to these constraints, as well as automation of the whole process flow of all five phases, will be the key focus of the work to be carried out shortly. Predicting health status of employee in industry or information trends is made easier by these data patterns. The proposed classifier achieves the accuracy rate of 93.265%. |
format | Online Article Text |
id | pubmed-8763559 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-87635592022-01-18 Data Mining in Employee Healthcare Detection Using Intelligence Techniques for Industry Development Mehbodniya, Abolfazl Khan, Ihtiram Raza Chakraborty, Sudeshna Karthik, M. Mehta, Kamakshi Ali, Liaqat Nuagah, Stephen Jeswinde J Healthc Eng Research Article BACKGROUND: Even in today's environment, when there is a plethora of information accessible, it may be difficult to make appropriate choices for one's well-being. Data mining, machine learning, and computational statistics are among the most popular arenas of training today, and they are all aimed at secondary empowered person in making good decisions that will maximize the outcome of whatever working area they are involved with. Because the degree of rise in the number of patient roles is directly related to the rate of people growth and lifestyle variations, the healthcare sector has a significant need for data processing services. When it comes to cancer, the prognosis is an expression that relates to the possibility of the patient surviving in general, but it may also be used to describe the severity of the sickness as it will present itself in the patient's future timeline. Methodology. The proposed technique consists of three stages: input data acquisition, preprocessing, and classification. Data acquisition consists of input raw data which is followed by preprocessing to eliminate the missed data and the classification is carried out using ensemble classifier to analyze the stages of cancer. This study explored the combined influence of the prominent labels in conjunction with one another utilizing the multilabel classifier approach, which is successful. Finally, an ensemble classifier model has been constructed and experimentally validated to increase the accuracy of the classifier model, which has been previously shown. The entire performance of the recommended and tested models demonstrates a steady development of 2% to 6% over the baseline presentation on the baseline performance. RESULTS: Providing a good contribution to the general health welfare of noncommercial potential workers in the healthcare sector is an opportunity provided by this recommended job outcome. It is anticipated that alternative solutions to these constraints, as well as automation of the whole process flow of all five phases, will be the key focus of the work to be carried out shortly. Predicting health status of employee in industry or information trends is made easier by these data patterns. The proposed classifier achieves the accuracy rate of 93.265%. Hindawi 2022-01-10 /pmc/articles/PMC8763559/ /pubmed/35047155 http://dx.doi.org/10.1155/2022/6462657 Text en Copyright © 2022 Abolfazl Mehbodniya et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Mehbodniya, Abolfazl Khan, Ihtiram Raza Chakraborty, Sudeshna Karthik, M. Mehta, Kamakshi Ali, Liaqat Nuagah, Stephen Jeswinde Data Mining in Employee Healthcare Detection Using Intelligence Techniques for Industry Development |
title | Data Mining in Employee Healthcare Detection Using Intelligence Techniques for Industry Development |
title_full | Data Mining in Employee Healthcare Detection Using Intelligence Techniques for Industry Development |
title_fullStr | Data Mining in Employee Healthcare Detection Using Intelligence Techniques for Industry Development |
title_full_unstemmed | Data Mining in Employee Healthcare Detection Using Intelligence Techniques for Industry Development |
title_short | Data Mining in Employee Healthcare Detection Using Intelligence Techniques for Industry Development |
title_sort | data mining in employee healthcare detection using intelligence techniques for industry development |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763559/ https://www.ncbi.nlm.nih.gov/pubmed/35047155 http://dx.doi.org/10.1155/2022/6462657 |
work_keys_str_mv | AT mehbodniyaabolfazl datamininginemployeehealthcaredetectionusingintelligencetechniquesforindustrydevelopment AT khanihtiramraza datamininginemployeehealthcaredetectionusingintelligencetechniquesforindustrydevelopment AT chakrabortysudeshna datamininginemployeehealthcaredetectionusingintelligencetechniquesforindustrydevelopment AT karthikm datamininginemployeehealthcaredetectionusingintelligencetechniquesforindustrydevelopment AT mehtakamakshi datamininginemployeehealthcaredetectionusingintelligencetechniquesforindustrydevelopment AT aliliaqat datamininginemployeehealthcaredetectionusingintelligencetechniquesforindustrydevelopment AT nuagahstephenjeswinde datamininginemployeehealthcaredetectionusingintelligencetechniquesforindustrydevelopment |