Cargando…
Multiscale U-Net with Spatial Positional Attention for Retinal Vessel Segmentation
Retinal vessel segmentation is essential for the detection and diagnosis of eye diseases. However, it is difficult to accurately identify the vessel boundary due to the large variations of scale in the retinal vessels and the low contrast between the vessel and the background. Deep learning has a go...
Autores principales: | Liu, Congjun, Gu, Penghui, Xiao, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763561/ https://www.ncbi.nlm.nih.gov/pubmed/35047151 http://dx.doi.org/10.1155/2022/5188362 |
Ejemplares similares
-
An improved U-net based retinal vessel image segmentation method
por: Ren, Kan, et al.
Publicado: (2022) -
Multi-Layer Preprocessing and U-Net with Residual Attention Block for Retinal Blood Vessel Segmentation
por: Alsayat, Ahmed, et al.
Publicado: (2023) -
SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation
por: Zhao, Peng, et al.
Publicado: (2020) -
Image Segmentation of Retinal Blood Vessels Based on Dual-Attention Multiscale Feature Fusion
por: Gao, Jixun, et al.
Publicado: (2022) -
ASCU-Net: Attention Gate, Spatial and Channel Attention U-Net for Skin Lesion Segmentation
por: Tong, Xiaozhong, et al.
Publicado: (2021)