Cargando…
Mapping single-cell data to reference atlases by transfer learning
Large single-cell atlases are now routinely generated to serve as references for analysis of smaller-scale studies. Yet learning from reference data is complicated by batch effects between datasets, limited availability of computational resources and sharing restrictions on raw data. Here we introdu...
Autores principales: | Lotfollahi, Mohammad, Naghipourfar, Mohsen, Luecken, Malte D., Khajavi, Matin, Büttner, Maren, Wagenstetter, Marco, Avsec, Žiga, Gayoso, Adam, Yosef, Nir, Interlandi, Marta, Rybakov, Sergei, Misharin, Alexander V., Theis, Fabian J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763644/ https://www.ncbi.nlm.nih.gov/pubmed/34462589 http://dx.doi.org/10.1038/s41587-021-01001-7 |
Ejemplares similares
-
Benchmarking atlas-level data integration in single-cell genomics
por: Luecken, Malte D., et al.
Publicado: (2021) -
Biologically informed deep learning to query gene programs in single-cell atlases
por: Lotfollahi, Mohammad, et al.
Publicado: (2023) -
Population-level integration of single-cell datasets enables multi-scale analysis across samples
por: De Donno, Carlo, et al.
Publicado: (2023) -
Current best practices in single‐cell RNA‐seq analysis: a tutorial
por: Luecken, Malte D, et al.
Publicado: (2019) -
Single-cell reference mapping to construct and extend cell-type hierarchies
por: Michielsen, Lieke, et al.
Publicado: (2023)