Cargando…
Texture Analysis Using CT and Chemical Shift Encoding-Based Water-Fat MRI Can Improve Differentiation Between Patients With and Without Osteoporotic Vertebral Fractures
PURPOSE: Osteoporosis is a highly prevalent skeletal disease that frequently entails vertebral fractures. Areal bone mineral density (BMD) derived from dual-energy X-ray absorptiometry (DXA) is the reference standard, but has well-known limitations. Texture analysis can provide surrogate markers of...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763669/ https://www.ncbi.nlm.nih.gov/pubmed/35058878 http://dx.doi.org/10.3389/fendo.2021.778537 |
_version_ | 1784633998848294912 |
---|---|
author | Sollmann, Nico Becherucci, Edoardo A. Boehm, Christof Husseini, Malek El Ruschke, Stefan Burian, Egon Kirschke, Jan S. Link, Thomas M. Subburaj, Karupppasamy Karampinos, Dimitrios C. Krug, Roland Baum, Thomas Dieckmeyer, Michael |
author_facet | Sollmann, Nico Becherucci, Edoardo A. Boehm, Christof Husseini, Malek El Ruschke, Stefan Burian, Egon Kirschke, Jan S. Link, Thomas M. Subburaj, Karupppasamy Karampinos, Dimitrios C. Krug, Roland Baum, Thomas Dieckmeyer, Michael |
author_sort | Sollmann, Nico |
collection | PubMed |
description | PURPOSE: Osteoporosis is a highly prevalent skeletal disease that frequently entails vertebral fractures. Areal bone mineral density (BMD) derived from dual-energy X-ray absorptiometry (DXA) is the reference standard, but has well-known limitations. Texture analysis can provide surrogate markers of tissue microstructure based on computed tomography (CT) or magnetic resonance imaging (MRI) data of the spine, thus potentially improving fracture risk estimation beyond areal BMD. However, it is largely unknown whether MRI-derived texture analysis can predict volumetric BMD (vBMD), or whether a model incorporating texture analysis based on CT and MRI may be capable of differentiating between patients with and without osteoporotic vertebral fractures. MATERIALS AND METHODS: Twenty-six patients (15 females, median age: 73 years, 11 patients showing at least one osteoporotic vertebral fracture) who had CT and 3-Tesla chemical shift encoding-based water-fat MRI (CSE-MRI) available were analyzed. In total, 171 vertebral bodies of the thoracolumbar spine were segmented using an automatic convolutional neural network (CNN)-based framework, followed by extraction of integral and trabecular vBMD using CT data. For CSE-MRI, manual segmentation of vertebral bodies and consecutive extraction of the mean proton density fat fraction (PDFF) and T2* was performed. First-order, second-order, and higher-order texture features were derived from texture analysis using CT and CSE-MRI data. Stepwise multivariate linear regression models were computed using integral vBMD and fracture status as dependent variables. RESULTS: Patients with osteoporotic vertebral fractures showed significantly lower integral and trabecular vBMD when compared to patients without fractures (p<0.001). For the model with integral vBMD as the dependent variable, T2* combined with three PDFF-based texture features explained 40% of the variance (adjusted R(2) [Formula: see text] = 0.40; p<0.001). Furthermore, regarding the differentiation between patients with and without osteoporotic vertebral fractures, a model including texture features from CT and CSE-MRI data showed better performance than a model based on integral vBMD and PDFF only ( [Formula: see text] = 0.47 vs. [Formula: see text] = 0.81; included texture features in the final model: integral vBMD, CT_Short-run_emphasis, CT_Varianceglobal, and PDFF_Variance). CONCLUSION: Using texture analysis for spine CT and CSE-MRI can facilitate the differentiation between patients with and without osteoporotic vertebral fractures, implicating that future fracture prediction in osteoporosis may be improved. |
format | Online Article Text |
id | pubmed-8763669 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-87636692022-01-19 Texture Analysis Using CT and Chemical Shift Encoding-Based Water-Fat MRI Can Improve Differentiation Between Patients With and Without Osteoporotic Vertebral Fractures Sollmann, Nico Becherucci, Edoardo A. Boehm, Christof Husseini, Malek El Ruschke, Stefan Burian, Egon Kirschke, Jan S. Link, Thomas M. Subburaj, Karupppasamy Karampinos, Dimitrios C. Krug, Roland Baum, Thomas Dieckmeyer, Michael Front Endocrinol (Lausanne) Endocrinology PURPOSE: Osteoporosis is a highly prevalent skeletal disease that frequently entails vertebral fractures. Areal bone mineral density (BMD) derived from dual-energy X-ray absorptiometry (DXA) is the reference standard, but has well-known limitations. Texture analysis can provide surrogate markers of tissue microstructure based on computed tomography (CT) or magnetic resonance imaging (MRI) data of the spine, thus potentially improving fracture risk estimation beyond areal BMD. However, it is largely unknown whether MRI-derived texture analysis can predict volumetric BMD (vBMD), or whether a model incorporating texture analysis based on CT and MRI may be capable of differentiating between patients with and without osteoporotic vertebral fractures. MATERIALS AND METHODS: Twenty-six patients (15 females, median age: 73 years, 11 patients showing at least one osteoporotic vertebral fracture) who had CT and 3-Tesla chemical shift encoding-based water-fat MRI (CSE-MRI) available were analyzed. In total, 171 vertebral bodies of the thoracolumbar spine were segmented using an automatic convolutional neural network (CNN)-based framework, followed by extraction of integral and trabecular vBMD using CT data. For CSE-MRI, manual segmentation of vertebral bodies and consecutive extraction of the mean proton density fat fraction (PDFF) and T2* was performed. First-order, second-order, and higher-order texture features were derived from texture analysis using CT and CSE-MRI data. Stepwise multivariate linear regression models were computed using integral vBMD and fracture status as dependent variables. RESULTS: Patients with osteoporotic vertebral fractures showed significantly lower integral and trabecular vBMD when compared to patients without fractures (p<0.001). For the model with integral vBMD as the dependent variable, T2* combined with three PDFF-based texture features explained 40% of the variance (adjusted R(2) [Formula: see text] = 0.40; p<0.001). Furthermore, regarding the differentiation between patients with and without osteoporotic vertebral fractures, a model including texture features from CT and CSE-MRI data showed better performance than a model based on integral vBMD and PDFF only ( [Formula: see text] = 0.47 vs. [Formula: see text] = 0.81; included texture features in the final model: integral vBMD, CT_Short-run_emphasis, CT_Varianceglobal, and PDFF_Variance). CONCLUSION: Using texture analysis for spine CT and CSE-MRI can facilitate the differentiation between patients with and without osteoporotic vertebral fractures, implicating that future fracture prediction in osteoporosis may be improved. Frontiers Media S.A. 2022-01-04 /pmc/articles/PMC8763669/ /pubmed/35058878 http://dx.doi.org/10.3389/fendo.2021.778537 Text en Copyright © 2022 Sollmann, Becherucci, Boehm, Husseini, Ruschke, Burian, Kirschke, Link, Subburaj, Karampinos, Krug, Baum and Dieckmeyer https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Endocrinology Sollmann, Nico Becherucci, Edoardo A. Boehm, Christof Husseini, Malek El Ruschke, Stefan Burian, Egon Kirschke, Jan S. Link, Thomas M. Subburaj, Karupppasamy Karampinos, Dimitrios C. Krug, Roland Baum, Thomas Dieckmeyer, Michael Texture Analysis Using CT and Chemical Shift Encoding-Based Water-Fat MRI Can Improve Differentiation Between Patients With and Without Osteoporotic Vertebral Fractures |
title | Texture Analysis Using CT and Chemical Shift Encoding-Based Water-Fat MRI Can Improve Differentiation Between Patients With and Without Osteoporotic Vertebral Fractures |
title_full | Texture Analysis Using CT and Chemical Shift Encoding-Based Water-Fat MRI Can Improve Differentiation Between Patients With and Without Osteoporotic Vertebral Fractures |
title_fullStr | Texture Analysis Using CT and Chemical Shift Encoding-Based Water-Fat MRI Can Improve Differentiation Between Patients With and Without Osteoporotic Vertebral Fractures |
title_full_unstemmed | Texture Analysis Using CT and Chemical Shift Encoding-Based Water-Fat MRI Can Improve Differentiation Between Patients With and Without Osteoporotic Vertebral Fractures |
title_short | Texture Analysis Using CT and Chemical Shift Encoding-Based Water-Fat MRI Can Improve Differentiation Between Patients With and Without Osteoporotic Vertebral Fractures |
title_sort | texture analysis using ct and chemical shift encoding-based water-fat mri can improve differentiation between patients with and without osteoporotic vertebral fractures |
topic | Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763669/ https://www.ncbi.nlm.nih.gov/pubmed/35058878 http://dx.doi.org/10.3389/fendo.2021.778537 |
work_keys_str_mv | AT sollmannnico textureanalysisusingctandchemicalshiftencodingbasedwaterfatmricanimprovedifferentiationbetweenpatientswithandwithoutosteoporoticvertebralfractures AT becherucciedoardoa textureanalysisusingctandchemicalshiftencodingbasedwaterfatmricanimprovedifferentiationbetweenpatientswithandwithoutosteoporoticvertebralfractures AT boehmchristof textureanalysisusingctandchemicalshiftencodingbasedwaterfatmricanimprovedifferentiationbetweenpatientswithandwithoutosteoporoticvertebralfractures AT husseinimalekel textureanalysisusingctandchemicalshiftencodingbasedwaterfatmricanimprovedifferentiationbetweenpatientswithandwithoutosteoporoticvertebralfractures AT ruschkestefan textureanalysisusingctandchemicalshiftencodingbasedwaterfatmricanimprovedifferentiationbetweenpatientswithandwithoutosteoporoticvertebralfractures AT burianegon textureanalysisusingctandchemicalshiftencodingbasedwaterfatmricanimprovedifferentiationbetweenpatientswithandwithoutosteoporoticvertebralfractures AT kirschkejans textureanalysisusingctandchemicalshiftencodingbasedwaterfatmricanimprovedifferentiationbetweenpatientswithandwithoutosteoporoticvertebralfractures AT linkthomasm textureanalysisusingctandchemicalshiftencodingbasedwaterfatmricanimprovedifferentiationbetweenpatientswithandwithoutosteoporoticvertebralfractures AT subburajkarupppasamy textureanalysisusingctandchemicalshiftencodingbasedwaterfatmricanimprovedifferentiationbetweenpatientswithandwithoutosteoporoticvertebralfractures AT karampinosdimitriosc textureanalysisusingctandchemicalshiftencodingbasedwaterfatmricanimprovedifferentiationbetweenpatientswithandwithoutosteoporoticvertebralfractures AT krugroland textureanalysisusingctandchemicalshiftencodingbasedwaterfatmricanimprovedifferentiationbetweenpatientswithandwithoutosteoporoticvertebralfractures AT baumthomas textureanalysisusingctandchemicalshiftencodingbasedwaterfatmricanimprovedifferentiationbetweenpatientswithandwithoutosteoporoticvertebralfractures AT dieckmeyermichael textureanalysisusingctandchemicalshiftencodingbasedwaterfatmricanimprovedifferentiationbetweenpatientswithandwithoutosteoporoticvertebralfractures |