Cargando…
Prediction of lncRNA–Disease Associations via Closest Node Weight Graphs of the Spatial Neighborhood Based on the Edge Attention Graph Convolutional Network
Accumulated evidence of biological clinical trials has shown that long non-coding RNAs (lncRNAs) are closely related to the occurrence and development of various complex human diseases. Research works on lncRNA–disease relations will benefit to further understand the pathogenesis of human complex di...
Autores principales: | Li, Jianwei, Kong, Mengfan, Wang, Duanyang, Yang, Zhenwu, Hao, Xiaoke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763691/ https://www.ncbi.nlm.nih.gov/pubmed/35058974 http://dx.doi.org/10.3389/fgene.2021.808962 |
Ejemplares similares
-
Co-embedding of edges and nodes with deep graph convolutional neural networks
por: Zhou, Yuchen, et al.
Publicado: (2023) -
SVDNVLDA: predicting lncRNA-disease associations by Singular Value Decomposition and node2vec
por: Li, Jianwei, et al.
Publicado: (2021) -
gGATLDA: lncRNA-disease association prediction based on graph-level graph attention network
por: Wang, Li, et al.
Publicado: (2022) -
Spatial-Temporal Attention Mechanism and Graph Convolutional Networks for Destination Prediction
por: Li, Cong, et al.
Publicado: (2022) -
Graph Convolutional Network and Convolutional Neural Network Based Method for Predicting lncRNA-Disease Associations
por: Xuan, Ping, et al.
Publicado: (2019)