Cargando…

Genetic markers for the resistance of honey bee to Varroa destructor

In the mid-20th century, the first case of infection of European bees Apis mellifera L. with the ectoparasite mite Varroa destructor was recorded. The original host of this mite is the Asian bee Apis cerana. The mite V. destructor was widespread throughout Europe, North and South America, and Austra...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaskinova, M.D., Gaifullina, L.R., Saltykova, E.S., Poskryakov, A.V., Nikolenko, A.G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763714/
https://www.ncbi.nlm.nih.gov/pubmed/35087998
http://dx.doi.org/10.18699/VJ20.683
Descripción
Sumario:In the mid-20th century, the first case of infection of European bees Apis mellifera L. with the ectoparasite mite Varroa destructor was recorded. The original host of this mite is the Asian bee Apis cerana. The mite V. destructor was widespread throughout Europe, North and South America, and Australia remained the only continent free from this parasite. Without acaricide treatment any honeybee colony dies within 1–4 years. The use of synthetic acaricides has not justified itself – they make beekeeping products unsuitable and mites develop resistance to them, which forces the use of even greater concentrations that can be toxic to the bees. Therefore, the only safe measure to combat the mite is the use of biological control methods. One of these methods is the selection of bee colonies with natural mite resistance. In this article we summarize publications devoted to the search for genetic markers associated with resistance to V. destructor. The first part discusses the basic mechanisms of bee resistance (Varroa sensitive hygienic behavior and grooming) and methods for their assessment. The second part focuses on research aimed at searching for loci and candidate genes associated with resistance to varroosis by mapping quantitative traits loci and genome-wide association studies. The third part summarizes studies of the transcriptome profile of Varroa resistant bees. The last part discusses the most likely candidate genes – potential markers for breeding Varroa resistant bees. Resistance to the mite is manifested in a variety of phenotypes and is under polygenic control. The establishing of gene pathways involved in resistance to Varroa will help create a methodological basis for the selection of Varroa resistant honeybee colonies.