Cargando…
Accumulation pattern of polycyclic aromatic hydrocarbons using Plantago lanceolata L. as passive biomonitor
Biomonitors are considered a cheap alternative of active air samplers, especially where spatial pattern of air quality is to be monitored, requiring numerous parallel measurements. Of higher plants, Plantago lanceolata L. has been proven a good monitor species with proper accumulation capacity. Whil...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763834/ https://www.ncbi.nlm.nih.gov/pubmed/34476695 http://dx.doi.org/10.1007/s11356-021-16141-1 |
Sumario: | Biomonitors are considered a cheap alternative of active air samplers, especially where spatial pattern of air quality is to be monitored, requiring numerous parallel measurements. Of higher plants, Plantago lanceolata L. has been proven a good monitor species with proper accumulation capacity. While biomonitoring studies are difficult to compare due to inherent errors such as the diverse plant material used in different studies, the No. 227 OECD GUIDELINE FOR THE TESTING OF CHEMICALS: Terrestrial Plant Test: Vegetative Vigour Test provides a tool to test extract of aerosol samples under controlled laboratory conditions. In our study, this guideline was followed to experimentally treat Plantago with the aqueous extract of a diesel exhaust sample. Accumulation pattern of polyaromatic hydrocarbons (PAHs) was assessed and compared to samples collected in the field. Unlike most studies reported in the literature, both in the experimentally treated and field Plantago samples, high ratio of high molecular weight PAHs was experienced. Distribution pattern of accumulated PAHs showed strong correlation between the experimentally treated sample and most of the field plantain samples, underlying the usefulness of laboratory treatments for bioaccumulation studies. |
---|