Cargando…
Heterogeneous digital biomarker integration out-performs patient self-reports in predicting Parkinson’s disease
Parkinson’s disease (PD) is one of the first diseases where digital biomarkers demonstrated excellent performance in differentiating disease from healthy individuals. However, no study has systematically compared and leveraged multiple types of digital biomarkers to predict PD. Particularly, machine...
Autores principales: | Deng, Kaiwen, Li, Yueming, Zhang, Hanrui, Wang, Jian, Albin, Roger L., Guan, Yuanfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763910/ https://www.ncbi.nlm.nih.gov/pubmed/35039601 http://dx.doi.org/10.1038/s42003-022-03002-x |
Ejemplares similares
-
Deep Learning Identifies Digital Biomarkers for Self-Reported Parkinson's Disease
por: Zhang, Hanrui, et al.
Publicado: (2020) -
Timesias: A machine learning pipeline for predicting outcomes from time-series clinical records
por: Zhang, Hanrui, et al.
Publicado: (2021) -
Protocol for using Ciclops to build models trained on cross-platform transcriptome data for clinical outcome prediction
por: Chou, Elysia, et al.
Publicado: (2022) -
Treatment Stratification of Patients with Metastatic Castration-Resistant Prostate Cancer by Machine Learning
por: Deng, Kaiwen, et al.
Publicado: (2019) -
Enabling Eating Detection in a Free-living Environment: Integrative Engineering and Machine Learning Study
por: Zhang, Bo, et al.
Publicado: (2022)