Cargando…

The Impact of Cocirculating Pathogens on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/Coronavirus Disease 2019 Surveillance: How Concurrent Epidemics May Introduce Bias and Decrease the Observed SARS-CoV-2 Percentage Positivity

BACKGROUND: Circulation of seasonal non–severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) respiratory viruses with syndromic overlap during the coronavirus disease 2019 (COVID-19) pandemic may alter the quality of COVID-19 surveillance, with possible consequences for real-time analysis an...

Descripción completa

Detalles Bibliográficos
Autores principales: Kovacevic, Aleksandra, Eggo, Rosalind M, Baguelin, Marc, Domenech de Cellès, Matthieu, Opatowski, Lulla
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763960/
https://www.ncbi.nlm.nih.gov/pubmed/34514500
http://dx.doi.org/10.1093/infdis/jiab459
Descripción
Sumario:BACKGROUND: Circulation of seasonal non–severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) respiratory viruses with syndromic overlap during the coronavirus disease 2019 (COVID-19) pandemic may alter the quality of COVID-19 surveillance, with possible consequences for real-time analysis and delay in implementation of control measures. METHODS: Using a multipathogen susceptible-exposed-infectious-recovered (SEIR) transmission model formalizing cocirculation of SARS-CoV-2 and another respiratory virus, we assessed how an outbreak of secondary virus may affect 2 COVID-19 surveillance indicators: testing demand and positivity. Using simulation, we assessed to what extent the use of multiplex polymerase chain reaction tests on a subsample of symptomatic individuals can help correct the observed SARS-CoV-2 percentage positivity and improve surveillance quality. RESULTS: We find that a non–SARS-CoV-2 epidemic strongly increases SARS-CoV-2 daily testing demand and artificially reduces the observed SARS-CoV-2 percentage positivity for the duration of the outbreak. We estimate that performing 1 multiplex test for every 1000 COVID-19 tests on symptomatic individuals could be sufficient to maintain surveillance of other respiratory viruses in the population and correct the observed SARS-CoV-2 percentage positivity. CONCLUSIONS: This study showed that cocirculating respiratory viruses can distort SARS-CoV-2 surveillance. Correction of the positivity rate can be achieved by using multiplex polymerase chain reaction tests, and a low number of samples is sufficient to avoid bias in SARS-CoV-2 surveillance.