Cargando…
Modeling risk of Sclerotinia sclerotiorum-induced disease development on canola and dry bean using machine learning algorithms
Diseases caused by the fungus Sclerotinia sclerotiorum are managed mainly through fungicide applications in canola and dry bean. Accurate estimation of the risk of disease development on these crops could help farmers make spraying decisions. Five machine learning (ML) models were evaluated in class...
Autores principales: | Shahoveisi, F., Riahi Manesh, M., del Río Mendoza, L. E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764076/ https://www.ncbi.nlm.nih.gov/pubmed/35039560 http://dx.doi.org/10.1038/s41598-021-04743-1 |
Ejemplares similares
-
Transcriptome analysis of the plant pathogen Sclerotinia sclerotiorum interaction with resistant and susceptible canola (Brassica napus) lines
por: Chittem, Kishore, et al.
Publicado: (2020) -
Genetic and molecular analysis of stem rot (Sclerotinia sclerotiorum) resistance in Brassica napus (canola type)
por: Khan, Muhammad Azam, et al.
Publicado: (2023) -
Population structure and phenotypic variation of Sclerotinia sclerotiorum from dry bean (Phaseolus vulgaris) in the United States
por: Kamvar, Zhian N., et al.
Publicado: (2017) -
Genome-Wide Association Study (GWAS) for resistance to Sclerotinia sclerotiorum in Common Bean
por: Campa, Ana, et al.
Publicado: (2020) -
Characterization of a canola C2 domain gene that interacts with PG, an effector of the necrotrophic fungus Sclerotinia sclerotiorum
por: Wang, Xinyu, et al.
Publicado: (2009)