Cargando…
Recognition of Metal Ion Ligand-Binding Residues by Adding Correlation Features and Propensity Factors
The realization of many protein functions is inseparable from the interaction with ligands; in particular, the combination of protein and metal ion ligands performs an important biological function. Currently, it is a challenging work to identify the metal ion ligand-binding residues accurately by c...
Autores principales: | Xu, Shuang, Hu, Xiuzhen, Feng, Zhenxing, Pang, Jing, Sun, Kai, You, Xiaoxiao, Wang, Ziyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764267/ https://www.ncbi.nlm.nih.gov/pubmed/35058970 http://dx.doi.org/10.3389/fgene.2021.793800 |
Ejemplares similares
-
Prediction of metal ion ligand binding residues by adding disorder value and propensity factors based on deep learning algorithm
por: Hao, Sixi, et al.
Publicado: (2022) -
The Identification of Metal Ion Ligand-Binding Residues by Adding the Reclassified Relative Solvent Accessibility
por: Hu, Xiuzhen, et al.
Publicado: (2020) -
Recognizing Ion Ligand–Binding Residues by Random Forest Algorithm Based on Optimized Dihedral Angle
por: Liu, Liu, et al.
Publicado: (2020) -
Predicting Ca(2+) and Mg(2+) ligand binding sites by deep neural network algorithm
por: Sun, Kai, et al.
Publicado: (2022) -
Recognizing ion ligand binding sites by SMO algorithm
por: Wang, Shan, et al.
Publicado: (2019)