Cargando…
Modeling students’ performance using graph convolutional networks
Many models were recently proposed to classify students, relying on a large amount of pre-labeled data to verify their classification effectiveness. However, those models lack to accurately classify students into various behavioral patterns, employing nominal class labels, rather than ordinal ones....
Autores principales: | Mubarak, Ahmed A., Cao, Han, Hezam, Ibrahim M., Hao, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764330/ https://www.ncbi.nlm.nih.gov/pubmed/35070641 http://dx.doi.org/10.1007/s40747-022-00647-3 |
Ejemplares similares
-
GraphQA: protein model quality assessment using graph convolutional networks
por: Baldassarre, Federico, et al.
Publicado: (2020) -
SGCN: A Graph Sparsifier Based on Graph Convolutional Networks
por: Li, Jiayu, et al.
Publicado: (2020) -
Modeling polypharmacy side effects with graph convolutional networks
por: Zitnik, Marinka, et al.
Publicado: (2018) -
Adversarial dense graph convolutional networks for single-cell classification
por: Wang, Kangwei, et al.
Publicado: (2023) -
Single-cell classification using graph convolutional networks
por: Wang, Tianyu, et al.
Publicado: (2021)