Cargando…
Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging
The use of machine learning (ML) approaches to target clinical problems is called to revolutionize clinical decision-making in cardiology. The success of these tools is dependent on the understanding of the intrinsic processes being used during the conventional pathway by which clinicians make decis...
Autores principales: | Sanchez-Martinez, Sergio, Camara, Oscar, Piella, Gemma, Cikes, Maja, González-Ballester, Miguel Ángel, Miron, Marius, Vellido, Alfredo, Gómez, Emilia, Fraser, Alan G., Bijnens, Bart |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764455/ https://www.ncbi.nlm.nih.gov/pubmed/35059445 http://dx.doi.org/10.3389/fcvm.2021.765693 |
Ejemplares similares
-
Editorial: Systems biology and data-driven machine learning-based models in personalized cardiovascular medicine
por: Hueso, Miguel, et al.
Publicado: (2023) -
Riemannian Geometry of Functional Connectivity Matrices for Multi-Site Attention-Deficit/Hyperactivity Disorder Data Harmonization
por: Simeon, Guillem, et al.
Publicado: (2022) -
Analysis of Uncertainty and Variability in Finite Element Computational Models for Biomedical Engineering: Characterization and Propagation
por: Mangado, Nerea, et al.
Publicado: (2016) -
Shared Decision-Making and Patient-Reported Outcome Measures in Valvular Heart Disease
por: Saeed, Sahrai, et al.
Publicado: (2022) -
Shared Decision Making in Gastroenterology: Challenges and Opportunities
por: Fox, Jean C., et al.
Publicado: (2020)