Cargando…
White matter hyperintensities segmentation using an ensemble of neural networks
White matter hyperintensities (WMHs) represent the most common neuroimaging marker of cerebral small vessel disease (CSVD). The volume and location of WMHs are important clinical measures. We present a pipeline using deep fully convolutional network and ensemble models, combining U‐Net, SE‐Net, and...
Autores principales: | Li, Xinxin, Zhao, Yu, Jiang, Jiyang, Cheng, Jian, Zhu, Wanlin, Wu, Zhenzhou, Jing, Jing, Zhang, Zhe, Wen, Wei, Sachdev, Perminder S., Wang, Yongjun, Liu, Tao, Li, Zixiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764480/ https://www.ncbi.nlm.nih.gov/pubmed/34704337 http://dx.doi.org/10.1002/hbm.25695 |
Ejemplares similares
-
Ensemble learning via supervision augmentation for white matter hyperintensity segmentation
por: Guo, Xutao, et al.
Publicado: (2022) -
Reduced white matter microstructural integrity in prediabetes and diabetes: A population-based study
por: Jing, Jing, et al.
Publicado: (2022) -
Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images
por: Sundaresan, Vaanathi, et al.
Publicado: (2021) -
White matter hyperintensities segmentation using the ensemble U-Net with multi-scale highlighting foregrounds
por: Park, Gilsoon, et al.
Publicado: (2021) -
Segmentation of Cerebral Small Vessel Diseases-White Matter Hyperintensities Based on a Deep Learning System
por: Shan, Wei, et al.
Publicado: (2021)