Cargando…
LuxT Is a Global Regulator of Low-Cell-Density Behaviors, Including Type III Secretion, Siderophore Production, and Aerolysin Production, in Vibrio harveyi
Quorum sensing (QS) is a chemical communication process in which bacteria produce, release, and detect extracellular signaling molecules called autoinducers. Via combined transcriptional and posttranscriptional regulatory mechanisms, QS allows bacteria to collectively alter gene expression on a popu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764538/ https://www.ncbi.nlm.nih.gov/pubmed/35038896 http://dx.doi.org/10.1128/mbio.03621-21 |
Sumario: | Quorum sensing (QS) is a chemical communication process in which bacteria produce, release, and detect extracellular signaling molecules called autoinducers. Via combined transcriptional and posttranscriptional regulatory mechanisms, QS allows bacteria to collectively alter gene expression on a population-wide scale. Recently, the TetR family transcriptional regulator LuxT was shown to control Vibrio harveyi qrr1, encoding the Qrr1 small RNA that functions at the core of the QS regulatory cascade. Here, we use RNA sequencing to reveal that, beyond the control of qrr1, LuxT is a global regulator of 414 V. harveyi genes, including those involved in type III secretion, siderophore production, and aerolysin toxin biosynthesis. Importantly, LuxT directly represses swrZ, encoding a GntR family transcriptional regulator, and LuxT control of type III secretion, siderophore, and aerolysin genes occurs by two mechanisms, one that is SwrZ dependent and one that is SwrZ independent. All of these target genes specify QS-controlled behaviors that are enacted when V. harveyi is at low cell density. Thus, LuxT and SwrZ function in parallel with QS to drive particular low-cell-density behaviors. Phylogenetic analyses reveal that luxT is highly conserved among Vibrionaceae, but swrZ is less well conserved. In a test case, we find that in Aliivibrio fischeri, LuxT also represses swrZ. SwrZ is a repressor of A. fischeri siderophore production genes. Thus, LuxT repression of swrZ drives the activation of A. fischeri siderophore gene expression. Our results indicate that LuxT is a major regulator among Vibrionaceae, and in the species that also possess swrZ, LuxT functions with SwrZ to control gene expression. |
---|