Cargando…
A Deep Residual U-Net Algorithm for Automatic Detection and Quantification of Ascites on Abdominopelvic Computed Tomography Images Acquired in the Emergency Department: Model Development and Validation
BACKGROUND: Detection and quantification of intra-abdominal free fluid (ie, ascites) on computed tomography (CT) images are essential processes for finding emergent or urgent conditions in patients. In an emergency department, automatic detection and quantification of ascites will be beneficial. OBJ...
Autores principales: | Ko, Hoon, Huh, Jimi, Kim, Kyung Won, Chung, Heewon, Ko, Yousun, Kim, Jai Keun, Lee, Jei Hee, Lee, Jinseok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764611/ https://www.ncbi.nlm.nih.gov/pubmed/34982041 http://dx.doi.org/10.2196/34415 |
Ejemplares similares
-
A reliable and robust method for the upper thigh muscle quantification on computed tomography: toward a quantitative biomarker for sarcopenia
por: Ko, Yousun, et al.
Publicado: (2022) -
Prognostic artificial intelligence model to predict 5 year survival at 1 year after gastric cancer surgery based on nutrition and body morphometry
por: Chung, Heewon, et al.
Publicado: (2023) -
Artificial Intelligence in Gastric Cancer Imaging With Emphasis on Diagnostic Imaging and Body Morphometry
por: Kim, Kyung Won, et al.
Publicado: (2023) -
Abdominopelvic leiomyoma with large ascites: A case report and review of the literature
por: Wang, Yi-Wei, et al.
Publicado: (2021) -
Automatic quantification of in vitro NET formation
por: Brinkmann, Volker, et al.
Publicado: (2013)