Cargando…

Epigenetics of single-site and multi-site atherosclerosis in African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA)

BACKGROUND: DNA methylation, an epigenetic mechanism modulated by lifestyle and environmental factors, may be an important biomarker of complex diseases including cardiovascular diseases (CVD) and subclinical atherosclerosis. METHODS: DNA methylation in peripheral blood samples from 391 African-Amer...

Descripción completa

Detalles Bibliográficos
Autores principales: Ammous, Farah, Zhao, Wei, Lin, Lisha, Ratliff, Scott M., Mosley, Thomas H., Bielak, Lawrence F., Zhou, Xiang, Peyser, Patricia A., Kardia, Sharon L. R., Smith, Jennifer A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764761/
https://www.ncbi.nlm.nih.gov/pubmed/35039093
http://dx.doi.org/10.1186/s13148-022-01229-3
Descripción
Sumario:BACKGROUND: DNA methylation, an epigenetic mechanism modulated by lifestyle and environmental factors, may be an important biomarker of complex diseases including cardiovascular diseases (CVD) and subclinical atherosclerosis. METHODS: DNA methylation in peripheral blood samples from 391 African-Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) was assessed at baseline, and atherosclerosis was assessed 5 and 12 years later. Using linear mixed models, we examined the association between previously identified CpGs for coronary artery calcification (CAC) and carotid plaque, both individually and aggregated into methylation risk scores (MRS(CAC) and MRS(carotid)), and four measures of atherosclerosis (CAC, abdominal aorta calcification (AAC), ankle–brachial index (ABI), and multi-site atherosclerosis based on gender-specific quartiles of the single-site measures). We also examined the association between four epigenetic age acceleration measures (IEAA, EEAA, PhenoAge acceleration, and GrimAge acceleration) and the four atherosclerosis measures. Finally, we characterized the temporal stability of the epigenetic measures using repeated DNA methylation measured 5 years after baseline (N = 193). RESULTS: After adjusting for CVD risk factors, four CpGs (cg05575921(AHRR), cg09935388 (GFI1), cg21161138 (AHRR), and cg18168448 (LRRC52)) were associated with multi-site atherosclerosis (FDR < 0.1). cg05575921 was also associated with AAC and cg09935388 with ABI. MRS(CAC) was associated with ABI (Beta = 0.016, P = 0.006), and MRS(carotid) was associated with both AAC (Beta = 0.605, equivalent to approximately 1.8-fold increase in the Agatston score of AAC, P = 0.004) and multi-site atherosclerosis (Beta = 0.691, P = 0.002). A 5-year increase in GrimAge acceleration (~ 1 SD) was associated with a 1.6-fold (P = 0.012) increase in the Agatston score of AAC and 0.7 units (P = 0.0003) increase in multi-site atherosclerosis, all after adjusting for CVD risk factors. All epigenetic measures were relatively stable over 5 years, with the highest intraclass correlation coefficients observed for MRS(carotid) and GrimAge acceleration (0.87 and 0.89, respectively). CONCLUSIONS: We found evidence of an association between DNA methylation and atherosclerosis at multiple vascular sites in a sample of African-Americans. Further evaluation of these potential biomarkers is warranted to deepen our understanding of the relationship between epigenetics and atherosclerosis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13148-022-01229-3.