Cargando…

Boosting the acetol production in methanotrophic biocatalyst Methylomonas sp. DH-1 by the coupling activity of heteroexpressed novel protein PmoD with endogenous particulate methane monooxygenase

BACKGROUND: Methylacidiphilum sp. IT6 has been validated its C3 substrate assimilation pathway via acetol as a key intermediate using the PmoCAB3, a homolog of the particulate methane monooxygenase (pMMO). From the transcriptomic data, the contribution of PmoD of strain IT6 in acetone oxidation was...

Descripción completa

Detalles Bibliográficos
Autores principales: Chau, Tin Hoang Trung, Nguyen, Anh Duc, Lee, Eun Yeol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764830/
https://www.ncbi.nlm.nih.gov/pubmed/35418298
http://dx.doi.org/10.1186/s13068-022-02105-1
_version_ 1784634243323789312
author Chau, Tin Hoang Trung
Nguyen, Anh Duc
Lee, Eun Yeol
author_facet Chau, Tin Hoang Trung
Nguyen, Anh Duc
Lee, Eun Yeol
author_sort Chau, Tin Hoang Trung
collection PubMed
description BACKGROUND: Methylacidiphilum sp. IT6 has been validated its C3 substrate assimilation pathway via acetol as a key intermediate using the PmoCAB3, a homolog of the particulate methane monooxygenase (pMMO). From the transcriptomic data, the contribution of PmoD of strain IT6 in acetone oxidation was questioned. Methylomonas sp. DH-1, a type I methanotroph containing pmo operon without the existence of its pmoD, has been deployed as a biocatalyst for the gas-to-liquid bioconversion of methane and propane to methanol and acetone. Thus, Methylomonas sp. DH-1 is a suitable host for investigation. The PmoD-expressed Methylomonas sp. DH-1 can also be deployed for acetol production, a well-known intermediate for various industrial applications. Microbial production of acetol is a sustainable approach attracted attention so far. RESULTS: In this study, bioinformatics analyses elucidated that novel protein PmoD is a C-terminal transmembrane–helix membrane with the proposed function as a transport protein. Furthermore, the whole-cell biocatalyst was constructed in Methylomonas sp. DH-1 by co-expression the PmoD of Methylacidiphilum sp. IT6 with the endogenous pMMO to enable acetone oxidation. Under optimal conditions, the maximum accumulation, and specific productivity of acetol were 18.291 mM (1.35 g/L) and 0.317 mmol/g cell/h, respectively. The results showed the first coupling activity of pMMO with a heterologous protein PmoD, validated the involvement of PmoD in acetone oxidation, and demonstrated an unprecedented production of acetol from acetone in type I methanotrophic biocatalyst. From the data achieved in batch cultivation conditions, an assimilation pathway of acetone via acetol as the key intermediate was also proposed. CONCLUSION: Using bioinformatics tools, the protein PmoD has been elucidated as the membrane protein with the proposed function as a transport protein. Furthermore, results from the assays of PmoD-heteroexpressed Methylomonas sp. DH-1 as a whole-cell biocatalyst validated the coupling activity of PmoD with pMMO to convert acetone to acetol, which also unlocks the potential of this recombinant biocatalyst for acetol production. The proposed acetone-assimilated pathway in the recombinant Methylomonas sp. DH-1, once validated, can extend the metabolic flexibility of Methylomonas sp. DH-1. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13068-022-02105-1.
format Online
Article
Text
id pubmed-8764830
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-87648302022-01-19 Boosting the acetol production in methanotrophic biocatalyst Methylomonas sp. DH-1 by the coupling activity of heteroexpressed novel protein PmoD with endogenous particulate methane monooxygenase Chau, Tin Hoang Trung Nguyen, Anh Duc Lee, Eun Yeol Biotechnol Biofuels Bioprod Research BACKGROUND: Methylacidiphilum sp. IT6 has been validated its C3 substrate assimilation pathway via acetol as a key intermediate using the PmoCAB3, a homolog of the particulate methane monooxygenase (pMMO). From the transcriptomic data, the contribution of PmoD of strain IT6 in acetone oxidation was questioned. Methylomonas sp. DH-1, a type I methanotroph containing pmo operon without the existence of its pmoD, has been deployed as a biocatalyst for the gas-to-liquid bioconversion of methane and propane to methanol and acetone. Thus, Methylomonas sp. DH-1 is a suitable host for investigation. The PmoD-expressed Methylomonas sp. DH-1 can also be deployed for acetol production, a well-known intermediate for various industrial applications. Microbial production of acetol is a sustainable approach attracted attention so far. RESULTS: In this study, bioinformatics analyses elucidated that novel protein PmoD is a C-terminal transmembrane–helix membrane with the proposed function as a transport protein. Furthermore, the whole-cell biocatalyst was constructed in Methylomonas sp. DH-1 by co-expression the PmoD of Methylacidiphilum sp. IT6 with the endogenous pMMO to enable acetone oxidation. Under optimal conditions, the maximum accumulation, and specific productivity of acetol were 18.291 mM (1.35 g/L) and 0.317 mmol/g cell/h, respectively. The results showed the first coupling activity of pMMO with a heterologous protein PmoD, validated the involvement of PmoD in acetone oxidation, and demonstrated an unprecedented production of acetol from acetone in type I methanotrophic biocatalyst. From the data achieved in batch cultivation conditions, an assimilation pathway of acetone via acetol as the key intermediate was also proposed. CONCLUSION: Using bioinformatics tools, the protein PmoD has been elucidated as the membrane protein with the proposed function as a transport protein. Furthermore, results from the assays of PmoD-heteroexpressed Methylomonas sp. DH-1 as a whole-cell biocatalyst validated the coupling activity of PmoD with pMMO to convert acetone to acetol, which also unlocks the potential of this recombinant biocatalyst for acetol production. The proposed acetone-assimilated pathway in the recombinant Methylomonas sp. DH-1, once validated, can extend the metabolic flexibility of Methylomonas sp. DH-1. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13068-022-02105-1. BioMed Central 2022-01-17 /pmc/articles/PMC8764830/ /pubmed/35418298 http://dx.doi.org/10.1186/s13068-022-02105-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Chau, Tin Hoang Trung
Nguyen, Anh Duc
Lee, Eun Yeol
Boosting the acetol production in methanotrophic biocatalyst Methylomonas sp. DH-1 by the coupling activity of heteroexpressed novel protein PmoD with endogenous particulate methane monooxygenase
title Boosting the acetol production in methanotrophic biocatalyst Methylomonas sp. DH-1 by the coupling activity of heteroexpressed novel protein PmoD with endogenous particulate methane monooxygenase
title_full Boosting the acetol production in methanotrophic biocatalyst Methylomonas sp. DH-1 by the coupling activity of heteroexpressed novel protein PmoD with endogenous particulate methane monooxygenase
title_fullStr Boosting the acetol production in methanotrophic biocatalyst Methylomonas sp. DH-1 by the coupling activity of heteroexpressed novel protein PmoD with endogenous particulate methane monooxygenase
title_full_unstemmed Boosting the acetol production in methanotrophic biocatalyst Methylomonas sp. DH-1 by the coupling activity of heteroexpressed novel protein PmoD with endogenous particulate methane monooxygenase
title_short Boosting the acetol production in methanotrophic biocatalyst Methylomonas sp. DH-1 by the coupling activity of heteroexpressed novel protein PmoD with endogenous particulate methane monooxygenase
title_sort boosting the acetol production in methanotrophic biocatalyst methylomonas sp. dh-1 by the coupling activity of heteroexpressed novel protein pmod with endogenous particulate methane monooxygenase
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764830/
https://www.ncbi.nlm.nih.gov/pubmed/35418298
http://dx.doi.org/10.1186/s13068-022-02105-1
work_keys_str_mv AT chautinhoangtrung boostingtheacetolproductioninmethanotrophicbiocatalystmethylomonasspdh1bythecouplingactivityofheteroexpressednovelproteinpmodwithendogenousparticulatemethanemonooxygenase
AT nguyenanhduc boostingtheacetolproductioninmethanotrophicbiocatalystmethylomonasspdh1bythecouplingactivityofheteroexpressednovelproteinpmodwithendogenousparticulatemethanemonooxygenase
AT leeeunyeol boostingtheacetolproductioninmethanotrophicbiocatalystmethylomonasspdh1bythecouplingactivityofheteroexpressednovelproteinpmodwithendogenousparticulatemethanemonooxygenase