Cargando…

Introduction to the potential of Ferula ovina in dental implant research due to estrogenic bioactive compounds and adhesive properties

Recent developments in dental implant have heightened the urgent need to natural tissue adhesives estrogenic materials with ability of promoting the proliferation and osteoblastic differentiation in human dental pulp-derived stem cells, to provide better integration of tissue for dentistry. Up to no...

Descripción completa

Detalles Bibliográficos
Autores principales: Zare Mirakabad, Hoda, Khorramizadeh, M. Reza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8765653/
https://www.ncbi.nlm.nih.gov/pubmed/35041680
http://dx.doi.org/10.1371/journal.pone.0262045
Descripción
Sumario:Recent developments in dental implant have heightened the urgent need to natural tissue adhesives estrogenic materials with ability of promoting the proliferation and osteoblastic differentiation in human dental pulp-derived stem cells, to provide better integration of tissue for dentistry. Up to now, far little attention has been paid to adhesives extract of the root of Ferula sp. which contains biomaterial compounds with estrogenic activities. Prior to undertaking the investigation, analysis of the extract of the root of F. ovina revealed a novel terpenoid, and we identified it as Fenoferin. So far, this paper has focused on Fenoferin compared to Ferutinin and root extract to determine if Fenoferin caused changes in craniofacial cartilage, bone (ceratohyal) and tooth mineralization. Following the purpose of study, we used zebrafish as a well-developed model system for studying bone development, so the developing zebrafish larvae were exposed to various concentration of compounds at 2dpf, and the histological analyses were performed at 6dpf. The result of the current study highlights the importance of F. ovina in studies related to dental regenerative medicine.