Cargando…
A functional artificial neural network for noninvasive pretreatment evaluation of glioblastoma patients
BACKGROUND: Pretreatment assessments for glioblastoma (GBM) patients, especially elderly or frail patients, are critical for treatment planning. However, genetic profiling with intracranial biopsy carries a significant risk of permanent morbidity. We previously demonstrated that the CUL2 gene, encod...
Autores principales: | Zander, Eric, Ardeleanu, Andrew, Singleton, Ryan, Bede, Barnabas, Wu, Yilin, Zheng, Shuhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8765794/ https://www.ncbi.nlm.nih.gov/pubmed/35059640 http://dx.doi.org/10.1093/noajnl/vdab167 |
Ejemplares similares
-
Pathological neural networks and artificial neural networks in ALS: diagnostic classification based on pathognomonic neuroimaging features
por: Bede, Peter, et al.
Publicado: (2021) -
Noninvasive Evaluation of Liver Fibrosis Reverse Using Artificial Neural Network Model for Chronic Hepatitis B Patients
por: Wei, Wei, et al.
Publicado: (2019) -
Improved Prediction of Surgical Resectability in Patients with Glioblastoma using an Artificial Neural Network
por: Marcus, Adam P., et al.
Publicado: (2020) -
A noninvasive artificial neural network model to predict IgA nephropathy risk in Chinese population
por: Hou, Jie, et al.
Publicado: (2022) -
Mathematics of Fuzzy Sets and Fuzzy Logic
por: Bede, Barnabas
Publicado: (2013)