Cargando…
Prediction of generalized anxiety levels during the Covid-19 pandemic: A machine learning-based modeling approach
The rapid spread of the Covid-19 outbreak led many countries to enforce precautionary measures such as complete lockdowns. These lifestyle-altering measures caused a significant increase in anxiety levels globally. For that reason, decision-makers are in dire need of methods to prevent potential pub...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766246/ https://www.ncbi.nlm.nih.gov/pubmed/35071730 http://dx.doi.org/10.1016/j.imu.2022.100854 |
Sumario: | The rapid spread of the Covid-19 outbreak led many countries to enforce precautionary measures such as complete lockdowns. These lifestyle-altering measures caused a significant increase in anxiety levels globally. For that reason, decision-makers are in dire need of methods to prevent potential public mental crises. Machine learning has shown its effectiveness in the early prediction of several diseases. Therefore, this study aims to classify two-class and three-class anxiety problems early by utilizing a dataset collected during the Covid-19 pandemic in Saudi Arabia. The data was collected from 3017 participants from all regions of the Kingdom via an online survey containing questions to identify factors influencing anxiety levels, followed by questions from the GAD-7, a screening tool for Generalized Anxiety Disorders. The prediction models were built using the Support Vector Machine classifier for its robust outcomes in medical-related data and the J48 Decision Tree for its interpretability and comprehensibility. Experimental results demonstrated promising results for the early classification of two-class and three-class anxiety problems. As for comparing Support Vector Machine and J48, the Support Vector Machine classifier outperformed the J48 Decision Tree by attaining a classification accuracy of 100%, precision of 1.0, recall of 1.0, and f-measure of 1.0 using 10 features. |
---|