Cargando…
Ligands of the Neuropeptide Y Y2 Receptors as a Potential Multitarget Therapeutic Approach for the Protection of the Neurovascular Unit Against Acute Ischemia/Reperfusion: View from the Perspective of the Laboratory Bench
Ischemic stroke is the third leading cause of death and disability worldwide, with no available satisfactory prevention or treatment approach. The current treatment is limited to the use of “reperfusion methods,” i.e., an intravenous or intra-arterial infusion of a fibrinolytic agent, mechanical rem...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766383/ https://www.ncbi.nlm.nih.gov/pubmed/34292517 http://dx.doi.org/10.1007/s12975-021-00930-4 |
Sumario: | Ischemic stroke is the third leading cause of death and disability worldwide, with no available satisfactory prevention or treatment approach. The current treatment is limited to the use of “reperfusion methods,” i.e., an intravenous or intra-arterial infusion of a fibrinolytic agent, mechanical removal of the clot by thrombectomy, or a combination of both methods. It should be stressed, however, that only approximately 5% of all acute strokes are eligible for fibrinolytic treatment and fewer than 10% for thrombectomy. Despite the tremendous progress in understanding of the pathomechanisms of cerebral ischemia, the promising results of basic research on neuroprotection are not currently transferable to human stroke. A possible explanation for this failure is that experiments on in vivo animal models involve healthy young animals, and the experimental protocols seldom consider the importance of protecting the whole neurovascular unit (NVU), which ensures intracranial homeostasis and is seriously damaged by ischemia/reperfusion. One of the endogenous protective systems activated during ischemia and in neurodegenerative diseases is represented by neuropeptide Y (NPY). It has been demonstrated that activation of NPY Y2 receptors (Y2R) by a specific ligand decreases the volume of the postischemic infarction and improves performance in functional tests of rats with arterial hypertension subjected to middle cerebral artery occlusion/reperfusion. This functional improvement suggests the protection of the NVU. In this review, we focus on NPY and discuss the potential, multidirectional protective effects of Y2R agonists against acute focal ischemia/reperfusion injury, with special reference to the NVU. |
---|