Cargando…

Uncovering Novel Genomic Regions and Candidate Genes for Senescence-Related Traits by Genome-Wide Association Studies in Upland Cotton (Gossypium hirsutum L.)

Senescence in plants is a complex trait, which is controlled by both genetic and environmental factors and can affect the yield and quality of cotton. However, the genetic basis of cotton senescence remains relatively unknown. In this study, we reported genome-wide association studies (GWAS) based o...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Qibao, Li, Libei, Feng, Zhen, Yu, Shuxun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766411/
https://www.ncbi.nlm.nih.gov/pubmed/35069667
http://dx.doi.org/10.3389/fpls.2021.809522
_version_ 1784634524337963008
author Liu, Qibao
Li, Libei
Feng, Zhen
Yu, Shuxun
author_facet Liu, Qibao
Li, Libei
Feng, Zhen
Yu, Shuxun
author_sort Liu, Qibao
collection PubMed
description Senescence in plants is a complex trait, which is controlled by both genetic and environmental factors and can affect the yield and quality of cotton. However, the genetic basis of cotton senescence remains relatively unknown. In this study, we reported genome-wide association studies (GWAS) based on 185 accessions of upland cotton and 26,999 high-quality single-nucleotide polymorphisms (SNPs) to reveal the genetic basis of cotton senescence. To determine cotton senescence, we evaluated eight traits/indices. Our results revealed a high positive correlation (r>0.5) among SPAD value 20 days after topping (SPAD20d), relative difference of SPAD (RSPAD), nodes above white flower on topping day (NAWF0d), nodes above white flower 7 days after topping (NAWF7d), and number of open bolls on the upper four branches (NB), and genetic analysis revealed that all traits had medium or high heritability ranging from 0.53 to 0.86. Based on a multi-locus method (FASTmrMLM), a total of 63 stable and significant quantitative trait nucleotides (QTNs) were detected, which represented 50 genomic regions (GWAS risk loci) associated with cotton senescence. We observed three reliable loci located on chromosomes A02 (A02_105891088_107196428), D03 (D03_37952328_38393621) and D13 (D13_59408561_60730103) because of their high repeatability. One candidate gene (Ghir_D03G011060) was found in the locus D03_37952328_38393621, and its Arabidopsis thaliana homologous gene (AT5G23040) encodes a cell growth defect factor-like protein (CDF1), which might be involved in chlorophyll synthesis and cell death. Moreover, qRT-PCR showed that the transcript level of Ghir_D03G011060 was down-regulated in old cotton leaves, and virus-induced gene silencing (VIGS) indicated that silencing of Ghir_D03G011060 resulted in leaf chlorosis and promoted leaf senescence. In addition, two candidate genes (Ghir_A02G017660 and Ghir_D13G021720) were identified in loci A02_105891088_107196428 and D13_59408561_60730103, respectively. These results provide new insights into the genetic basis of cotton senescence and will serve as an important reference for the development and implementation of strategies to prevent premature senescence in cotton breeding programs.
format Online
Article
Text
id pubmed-8766411
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-87664112022-01-20 Uncovering Novel Genomic Regions and Candidate Genes for Senescence-Related Traits by Genome-Wide Association Studies in Upland Cotton (Gossypium hirsutum L.) Liu, Qibao Li, Libei Feng, Zhen Yu, Shuxun Front Plant Sci Plant Science Senescence in plants is a complex trait, which is controlled by both genetic and environmental factors and can affect the yield and quality of cotton. However, the genetic basis of cotton senescence remains relatively unknown. In this study, we reported genome-wide association studies (GWAS) based on 185 accessions of upland cotton and 26,999 high-quality single-nucleotide polymorphisms (SNPs) to reveal the genetic basis of cotton senescence. To determine cotton senescence, we evaluated eight traits/indices. Our results revealed a high positive correlation (r>0.5) among SPAD value 20 days after topping (SPAD20d), relative difference of SPAD (RSPAD), nodes above white flower on topping day (NAWF0d), nodes above white flower 7 days after topping (NAWF7d), and number of open bolls on the upper four branches (NB), and genetic analysis revealed that all traits had medium or high heritability ranging from 0.53 to 0.86. Based on a multi-locus method (FASTmrMLM), a total of 63 stable and significant quantitative trait nucleotides (QTNs) were detected, which represented 50 genomic regions (GWAS risk loci) associated with cotton senescence. We observed three reliable loci located on chromosomes A02 (A02_105891088_107196428), D03 (D03_37952328_38393621) and D13 (D13_59408561_60730103) because of their high repeatability. One candidate gene (Ghir_D03G011060) was found in the locus D03_37952328_38393621, and its Arabidopsis thaliana homologous gene (AT5G23040) encodes a cell growth defect factor-like protein (CDF1), which might be involved in chlorophyll synthesis and cell death. Moreover, qRT-PCR showed that the transcript level of Ghir_D03G011060 was down-regulated in old cotton leaves, and virus-induced gene silencing (VIGS) indicated that silencing of Ghir_D03G011060 resulted in leaf chlorosis and promoted leaf senescence. In addition, two candidate genes (Ghir_A02G017660 and Ghir_D13G021720) were identified in loci A02_105891088_107196428 and D13_59408561_60730103, respectively. These results provide new insights into the genetic basis of cotton senescence and will serve as an important reference for the development and implementation of strategies to prevent premature senescence in cotton breeding programs. Frontiers Media S.A. 2022-01-05 /pmc/articles/PMC8766411/ /pubmed/35069667 http://dx.doi.org/10.3389/fpls.2021.809522 Text en Copyright © 2022 Liu, Li, Feng and Yu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Liu, Qibao
Li, Libei
Feng, Zhen
Yu, Shuxun
Uncovering Novel Genomic Regions and Candidate Genes for Senescence-Related Traits by Genome-Wide Association Studies in Upland Cotton (Gossypium hirsutum L.)
title Uncovering Novel Genomic Regions and Candidate Genes for Senescence-Related Traits by Genome-Wide Association Studies in Upland Cotton (Gossypium hirsutum L.)
title_full Uncovering Novel Genomic Regions and Candidate Genes for Senescence-Related Traits by Genome-Wide Association Studies in Upland Cotton (Gossypium hirsutum L.)
title_fullStr Uncovering Novel Genomic Regions and Candidate Genes for Senescence-Related Traits by Genome-Wide Association Studies in Upland Cotton (Gossypium hirsutum L.)
title_full_unstemmed Uncovering Novel Genomic Regions and Candidate Genes for Senescence-Related Traits by Genome-Wide Association Studies in Upland Cotton (Gossypium hirsutum L.)
title_short Uncovering Novel Genomic Regions and Candidate Genes for Senescence-Related Traits by Genome-Wide Association Studies in Upland Cotton (Gossypium hirsutum L.)
title_sort uncovering novel genomic regions and candidate genes for senescence-related traits by genome-wide association studies in upland cotton (gossypium hirsutum l.)
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766411/
https://www.ncbi.nlm.nih.gov/pubmed/35069667
http://dx.doi.org/10.3389/fpls.2021.809522
work_keys_str_mv AT liuqibao uncoveringnovelgenomicregionsandcandidategenesforsenescencerelatedtraitsbygenomewideassociationstudiesinuplandcottongossypiumhirsutuml
AT lilibei uncoveringnovelgenomicregionsandcandidategenesforsenescencerelatedtraitsbygenomewideassociationstudiesinuplandcottongossypiumhirsutuml
AT fengzhen uncoveringnovelgenomicregionsandcandidategenesforsenescencerelatedtraitsbygenomewideassociationstudiesinuplandcottongossypiumhirsutuml
AT yushuxun uncoveringnovelgenomicregionsandcandidategenesforsenescencerelatedtraitsbygenomewideassociationstudiesinuplandcottongossypiumhirsutuml