Cargando…
A neural network-based method for exhaustive cell label assignment using single cell RNA-seq data
The fast-advancing single cell RNA sequencing (scRNA-seq) technology enables researchers to study the transcriptome of heterogeneous tissues at a single cell level. The initial important step of analyzing scRNA-seq data is usually to accurately annotate cells. The traditional approach of annotating...
Autores principales: | Li, Ziyi, Feng, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766435/ https://www.ncbi.nlm.nih.gov/pubmed/35042860 http://dx.doi.org/10.1038/s41598-021-04473-4 |
Ejemplares similares
-
Cross-species cell-type assignment from single-cell RNA-seq data by a heterogeneous graph neural network
por: Liu, Xingyan, et al.
Publicado: (2023) -
Evaluation of methods to assign cell type labels to cell clusters from single-cell RNA-sequencing data
por: Diaz-Mejia, J. Javier, et al.
Publicado: (2019) -
Single‐cell RNA‐seq and bulk RNA‐seq explore the prognostic value of exhausted T cells in hepatocellular carcinoma
por: Tang, Xiaolong, et al.
Publicado: (2023) -
Using neural networks for reducing the dimensions of single-cell RNA-Seq data
por: Lin, Chieh, et al.
Publicado: (2017) -
Imputation method for single-cell RNA-seq data using neural topic model
por: Qi, Yueyang, et al.
Publicado: (2023)