Cargando…
Learning in continuous action space for developing high dimensional potential energy models
Reinforcement learning (RL) approaches that combine a tree search with deep learning have found remarkable success in searching exorbitantly large, albeit discrete action spaces, as in chess, Shogi and Go. Many real-world materials discovery and design applications, however, involve multi-dimensiona...
Autores principales: | Manna, Sukriti, Loeffler, Troy D., Batra, Rohit, Banik, Suvo, Chan, Henry, Varughese, Bilvin, Sasikumar, Kiran, Sternberg, Michael, Peterka, Tom, Cherukara, Mathew J., Gray, Stephen K., Sumpter, Bobby G., Sankaranarayanan, Subramanian K. R. S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766468/ https://www.ncbi.nlm.nih.gov/pubmed/35042872 http://dx.doi.org/10.1038/s41467-021-27849-6 |
Ejemplares similares
-
Machine learning coarse grained models for water
por: Chan, Henry, et al.
Publicado: (2019) -
Machine learning the metastable phase diagram of covalently bonded carbon
por: Srinivasan, Srilok, et al.
Publicado: (2022) -
Artificial Intelligence-Guided De Novo Molecular Design Targeting COVID-19
por: Srinivasan, Srilok, et al.
Publicado: (2021) -
Operando tribochemical formation of onion-like-carbon leads to macroscale superlubricity
por: Berman, Diana, et al.
Publicado: (2018) -
Active site localization of methane oxidation on Pt nanocrystals
por: Kim, Dongjin, et al.
Publicado: (2018)