Cargando…
Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients
Strong gradient systems can improve the signal-to-noise ratio of diffusion MRI measurements and enable a wider range of acquisition parameters that are beneficial for microstructural imaging. We present a comprehensive diffusion MRI dataset of 26 healthy participants acquired on the MGH-USC 3 T Conn...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766594/ https://www.ncbi.nlm.nih.gov/pubmed/35042861 http://dx.doi.org/10.1038/s41597-021-01092-6 |
_version_ | 1784634563607134208 |
---|---|
author | Tian, Qiyuan Fan, Qiuyun Witzel, Thomas Polackal, Maya N. Ohringer, Ned A. Ngamsombat, Chanon Russo, Andrew W. Machado, Natalya Brewer, Kristina Wang, Fuyixue Setsompop, Kawin Polimeni, Jonathan R. Keil, Boris Wald, Lawrence L. Rosen, Bruce R. Klawiter, Eric C. Nummenmaa, Aapo Huang, Susie Y. |
author_facet | Tian, Qiyuan Fan, Qiuyun Witzel, Thomas Polackal, Maya N. Ohringer, Ned A. Ngamsombat, Chanon Russo, Andrew W. Machado, Natalya Brewer, Kristina Wang, Fuyixue Setsompop, Kawin Polimeni, Jonathan R. Keil, Boris Wald, Lawrence L. Rosen, Bruce R. Klawiter, Eric C. Nummenmaa, Aapo Huang, Susie Y. |
author_sort | Tian, Qiyuan |
collection | PubMed |
description | Strong gradient systems can improve the signal-to-noise ratio of diffusion MRI measurements and enable a wider range of acquisition parameters that are beneficial for microstructural imaging. We present a comprehensive diffusion MRI dataset of 26 healthy participants acquired on the MGH-USC 3 T Connectome scanner equipped with 300 mT/m maximum gradient strength and a custom-built 64-channel head coil. For each participant, the one-hour long acquisition systematically sampled the accessible diffusion measurement space, including two diffusion times (19 and 49 ms), eight gradient strengths linearly spaced between 30 mT/m and 290 mT/m for each diffusion time, and 32 or 64 uniformly distributed directions. The diffusion MRI data were preprocessed to correct for gradient nonlinearity, eddy currents, and susceptibility induced distortions. In addition, scan/rescan data from a subset of seven individuals were also acquired and provided. The MGH Connectome Diffusion Microstructure Dataset (CDMD) may serve as a test bed for the development of new data analysis methods, such as fiber orientation estimation, tractography and microstructural modelling. |
format | Online Article Text |
id | pubmed-8766594 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-87665942022-02-04 Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients Tian, Qiyuan Fan, Qiuyun Witzel, Thomas Polackal, Maya N. Ohringer, Ned A. Ngamsombat, Chanon Russo, Andrew W. Machado, Natalya Brewer, Kristina Wang, Fuyixue Setsompop, Kawin Polimeni, Jonathan R. Keil, Boris Wald, Lawrence L. Rosen, Bruce R. Klawiter, Eric C. Nummenmaa, Aapo Huang, Susie Y. Sci Data Data Descriptor Strong gradient systems can improve the signal-to-noise ratio of diffusion MRI measurements and enable a wider range of acquisition parameters that are beneficial for microstructural imaging. We present a comprehensive diffusion MRI dataset of 26 healthy participants acquired on the MGH-USC 3 T Connectome scanner equipped with 300 mT/m maximum gradient strength and a custom-built 64-channel head coil. For each participant, the one-hour long acquisition systematically sampled the accessible diffusion measurement space, including two diffusion times (19 and 49 ms), eight gradient strengths linearly spaced between 30 mT/m and 290 mT/m for each diffusion time, and 32 or 64 uniformly distributed directions. The diffusion MRI data were preprocessed to correct for gradient nonlinearity, eddy currents, and susceptibility induced distortions. In addition, scan/rescan data from a subset of seven individuals were also acquired and provided. The MGH Connectome Diffusion Microstructure Dataset (CDMD) may serve as a test bed for the development of new data analysis methods, such as fiber orientation estimation, tractography and microstructural modelling. Nature Publishing Group UK 2022-01-18 /pmc/articles/PMC8766594/ /pubmed/35042861 http://dx.doi.org/10.1038/s41597-021-01092-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) applies to the metadata files associated with this article. |
spellingShingle | Data Descriptor Tian, Qiyuan Fan, Qiuyun Witzel, Thomas Polackal, Maya N. Ohringer, Ned A. Ngamsombat, Chanon Russo, Andrew W. Machado, Natalya Brewer, Kristina Wang, Fuyixue Setsompop, Kawin Polimeni, Jonathan R. Keil, Boris Wald, Lawrence L. Rosen, Bruce R. Klawiter, Eric C. Nummenmaa, Aapo Huang, Susie Y. Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients |
title | Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients |
title_full | Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients |
title_fullStr | Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients |
title_full_unstemmed | Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients |
title_short | Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients |
title_sort | comprehensive diffusion mri dataset for in vivo human brain microstructure mapping using 300 mt/m gradients |
topic | Data Descriptor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766594/ https://www.ncbi.nlm.nih.gov/pubmed/35042861 http://dx.doi.org/10.1038/s41597-021-01092-6 |
work_keys_str_mv | AT tianqiyuan comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT fanqiuyun comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT witzelthomas comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT polackalmayan comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT ohringerneda comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT ngamsombatchanon comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT russoandreww comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT machadonatalya comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT brewerkristina comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT wangfuyixue comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT setsompopkawin comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT polimenijonathanr comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT keilboris comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT waldlawrencel comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT rosenbrucer comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT klawiterericc comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT nummenmaaaapo comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients AT huangsusiey comprehensivediffusionmridatasetforinvivohumanbrainmicrostructuremappingusing300mtmgradients |