Cargando…

The big five model in bipolar disorder: a latent profile analysis and its impact on longterm illness severity

BACKGROUND: Using a personality typing approach, we investigated the relationship between personality profiles and the prediction of longterm illness severity in patients with bipolar disorder (BD). While previous research suggests associations between BD and traits from the NEO-FFI profiles, the cu...

Descripción completa

Detalles Bibliográficos
Autores principales: Ortelbach, Niklas, Rote, Jonas, Dingelstadt, Alice Mai Ly, Stolzenburg, Anna, Koenig, Cornelia, O’Malley, Grace, Quinlivan, Esther, Fiebig, Jana, Pfeiffer, Steffi, König, Barbara, Simhandl, Christian, Bauer, Michael, Pfennig, Andrea, Stamm, Thomas J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766615/
https://www.ncbi.nlm.nih.gov/pubmed/35041119
http://dx.doi.org/10.1186/s40345-021-00248-y
_version_ 1784634567059046400
author Ortelbach, Niklas
Rote, Jonas
Dingelstadt, Alice Mai Ly
Stolzenburg, Anna
Koenig, Cornelia
O’Malley, Grace
Quinlivan, Esther
Fiebig, Jana
Pfeiffer, Steffi
König, Barbara
Simhandl, Christian
Bauer, Michael
Pfennig, Andrea
Stamm, Thomas J.
author_facet Ortelbach, Niklas
Rote, Jonas
Dingelstadt, Alice Mai Ly
Stolzenburg, Anna
Koenig, Cornelia
O’Malley, Grace
Quinlivan, Esther
Fiebig, Jana
Pfeiffer, Steffi
König, Barbara
Simhandl, Christian
Bauer, Michael
Pfennig, Andrea
Stamm, Thomas J.
author_sort Ortelbach, Niklas
collection PubMed
description BACKGROUND: Using a personality typing approach, we investigated the relationship between personality profiles and the prediction of longterm illness severity in patients with bipolar disorder (BD). While previous research suggests associations between BD and traits from the NEO-FFI profiles, the current study firstly aimed to identify latent classes of NEO-FFI profiles, and, secondly, to examine their impact on the longterm prognosis of BD. METHODS: Based on the NEO-FFI profiles of 134 euthymic patients diagnosed with BD (64.2% female, mean age = 44.3 years), successive latent profile analyses were conducted. Subsequently, a subsample (n = 80) was examined prospectively by performing multiple regression analysis of the latent classes to evaluate the longitudinal course of the disease (mean: 54.7 weeks) measured using a modified Morbidity Index. RESULTS: The latent profile analyses suggested a 3-class model typifying in a resilient (n = 68, 51%), vulnerable (n = 55, 41%) and highly vulnerable (n = 11, 8%) class. In the regression analysis, higher vulnerability predicted a higher longterm Morbidity Index (R(2) = 0.28). CONCLUSIONS: Subgroups of patients with BD share a number of discrete personality features and their illness is characterized by a similar clinical course. This knowledge is valuable in a variety of clinical contexts including early detection, intervention planning and treatment process.
format Online
Article
Text
id pubmed-8766615
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-87666152022-02-02 The big five model in bipolar disorder: a latent profile analysis and its impact on longterm illness severity Ortelbach, Niklas Rote, Jonas Dingelstadt, Alice Mai Ly Stolzenburg, Anna Koenig, Cornelia O’Malley, Grace Quinlivan, Esther Fiebig, Jana Pfeiffer, Steffi König, Barbara Simhandl, Christian Bauer, Michael Pfennig, Andrea Stamm, Thomas J. Int J Bipolar Disord Research BACKGROUND: Using a personality typing approach, we investigated the relationship between personality profiles and the prediction of longterm illness severity in patients with bipolar disorder (BD). While previous research suggests associations between BD and traits from the NEO-FFI profiles, the current study firstly aimed to identify latent classes of NEO-FFI profiles, and, secondly, to examine their impact on the longterm prognosis of BD. METHODS: Based on the NEO-FFI profiles of 134 euthymic patients diagnosed with BD (64.2% female, mean age = 44.3 years), successive latent profile analyses were conducted. Subsequently, a subsample (n = 80) was examined prospectively by performing multiple regression analysis of the latent classes to evaluate the longitudinal course of the disease (mean: 54.7 weeks) measured using a modified Morbidity Index. RESULTS: The latent profile analyses suggested a 3-class model typifying in a resilient (n = 68, 51%), vulnerable (n = 55, 41%) and highly vulnerable (n = 11, 8%) class. In the regression analysis, higher vulnerability predicted a higher longterm Morbidity Index (R(2) = 0.28). CONCLUSIONS: Subgroups of patients with BD share a number of discrete personality features and their illness is characterized by a similar clinical course. This knowledge is valuable in a variety of clinical contexts including early detection, intervention planning and treatment process. Springer Berlin Heidelberg 2022-01-18 /pmc/articles/PMC8766615/ /pubmed/35041119 http://dx.doi.org/10.1186/s40345-021-00248-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research
Ortelbach, Niklas
Rote, Jonas
Dingelstadt, Alice Mai Ly
Stolzenburg, Anna
Koenig, Cornelia
O’Malley, Grace
Quinlivan, Esther
Fiebig, Jana
Pfeiffer, Steffi
König, Barbara
Simhandl, Christian
Bauer, Michael
Pfennig, Andrea
Stamm, Thomas J.
The big five model in bipolar disorder: a latent profile analysis and its impact on longterm illness severity
title The big five model in bipolar disorder: a latent profile analysis and its impact on longterm illness severity
title_full The big five model in bipolar disorder: a latent profile analysis and its impact on longterm illness severity
title_fullStr The big five model in bipolar disorder: a latent profile analysis and its impact on longterm illness severity
title_full_unstemmed The big five model in bipolar disorder: a latent profile analysis and its impact on longterm illness severity
title_short The big five model in bipolar disorder: a latent profile analysis and its impact on longterm illness severity
title_sort big five model in bipolar disorder: a latent profile analysis and its impact on longterm illness severity
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766615/
https://www.ncbi.nlm.nih.gov/pubmed/35041119
http://dx.doi.org/10.1186/s40345-021-00248-y
work_keys_str_mv AT ortelbachniklas thebigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT rotejonas thebigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT dingelstadtalicemaily thebigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT stolzenburganna thebigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT koenigcornelia thebigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT omalleygrace thebigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT quinlivanesther thebigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT fiebigjana thebigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT pfeiffersteffi thebigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT konigbarbara thebigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT simhandlchristian thebigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT bauermichael thebigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT pfennigandrea thebigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT stammthomasj thebigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT ortelbachniklas bigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT rotejonas bigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT dingelstadtalicemaily bigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT stolzenburganna bigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT koenigcornelia bigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT omalleygrace bigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT quinlivanesther bigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT fiebigjana bigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT pfeiffersteffi bigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT konigbarbara bigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT simhandlchristian bigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT bauermichael bigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT pfennigandrea bigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity
AT stammthomasj bigfivemodelinbipolardisorderalatentprofileanalysisanditsimpactonlongtermillnessseverity