Cargando…
Cross-condition and cross-platform remaining useful life estimation via adversarial-based domain adaptation
Supervised machine learning is a traditionally remaining useful life (RUL) estimation tool, which requires a lot of prior knowledge. For the situation lacking labeled data, supervised methods are invalid for the issue of domain shift in data distribution. In this paper, a adversarial-based domain ad...
Autores principales: | Zhao, Dongdong, Liu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766616/ https://www.ncbi.nlm.nih.gov/pubmed/35042894 http://dx.doi.org/10.1038/s41598-021-03835-2 |
Ejemplares similares
-
Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation
por: Wang, Xiaodong, et al.
Publicado: (2020) -
Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on an Autoencoder Scheme
por: Hou, Guisheng, et al.
Publicado: (2020) -
Data-driven remaining useful life prediction based on domain adaptation
por: Wen, Bin cheng, et al.
Publicado: (2021) -
Cystoscopic depth estimation using gated adversarial domain adaptation
por: Somers, Peter, et al.
Publicado: (2023) -
Estimation with Uncertainty via Conditional Generative Adversarial Networks
por: Lee, Minhyeok, et al.
Publicado: (2021)