Cargando…
Hardware-Efficient Stochastic Binary CNN Architectures for Near-Sensor Computing
With recent advances in the field of artificial intelligence (AI) such as binarized neural networks (BNNs), a wide variety of vision applications with energy-optimized implementations have become possible at the edge. Such networks have the first layer implemented with high precision, which poses a...
Autores principales: | Parmar, Vivek, Penkovsky, Bogdan, Querlioz, Damien, Suri, Manan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766965/ https://www.ncbi.nlm.nih.gov/pubmed/35069101 http://dx.doi.org/10.3389/fnins.2021.781786 |
Ejemplares similares
-
A Low-Power Hardware Architecture for Real-Time CNN Computing
por: Liu, Xinyu, et al.
Publicado: (2023) -
Towards an Efficient CNN Inference Architecture Enabling In-Sensor Processing †
por: Pantho, Md Jubaer Hossain, et al.
Publicado: (2021) -
Ultra-Fast Data-Mining Hardware Architecture Based on Stochastic Computing
por: Morro, Antoni, et al.
Publicado: (2015) -
Advances in neuromorphic hardware exploiting emerging nanoscale devices
por: Suri, Manan
Publicado: (2017) -
Using Memristors for Robust Local Learning of Hardware Restricted Boltzmann Machines
por: Ernoult, Maxence, et al.
Publicado: (2019)