Cargando…
Data-driven artificial and spiking neural networks for inverse kinematics in neurorobotics
Inverse kinematics is fundamental for computational motion planning. It is used to derive an appropriate state in a robot's configuration space, given a target position in task space. In this work, we investigate the performance of fully connected and residual artificial neural networks as well...
Autores principales: | Volinski, Alex, Zaidel, Yuval, Shalumov, Albert, DeWolf, Travis, Supic, Lazar, Ezra Tsur, Elishai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767299/ https://www.ncbi.nlm.nih.gov/pubmed/35079712 http://dx.doi.org/10.1016/j.patter.2021.100391 |
Ejemplares similares
-
Neuromorphic NEF-Based Inverse Kinematics and PID Control
por: Zaidel, Yuval, et al.
Publicado: (2021) -
Walking on the thin intersectional lines of disciplines
por: Ezra Tsur, Elishai, et al.
Publicado: (2022) -
Adaptive control of a wheelchair mounted robotic arm with neuromorphically integrated velocity readings and online-learning
por: Ehrlich, Michael, et al.
Publicado: (2022) -
Nengo and Low-Power AI Hardware for Robust, Embedded Neurorobotics
por: DeWolf, Travis, et al.
Publicado: (2020) -
An artificial spiking afferent nerve based on Mott memristors for neurorobotics
por: Zhang, Xumeng, et al.
Publicado: (2020)