Cargando…
Contrastive learning of heart and lung sounds for label-efficient diagnosis
Data labeling is often the limiting step in machine learning because it requires time from trained experts. To address the limitation on labeled data, contrastive learning, among other unsupervised learning methods, leverages unlabeled data to learn representations of data. Here, we propose a contra...
Autores principales: | Soni, Pratham N., Shi, Siyu, Sriram, Pranav R., Ng, Andrew Y., Rajpurkar, Pranav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767307/ https://www.ncbi.nlm.nih.gov/pubmed/35079716 http://dx.doi.org/10.1016/j.patter.2021.100400 |
Ejemplares similares
-
Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning
por: Tiu, Ekin, et al.
Publicado: (2022) -
AppendiXNet: Deep Learning for Diagnosis of Appendicitis from A Small Dataset of CT Exams Using Video Pretraining
por: Rajpurkar, Pranav, et al.
Publicado: (2020) -
DLBCL-Morph: Morphological features computed using deep learning for an annotated digital DLBCL image set
por: Vrabac, Damir, et al.
Publicado: (2021) -
Nasopharyngeal metabolomics and machine learning approach for the diagnosis of influenza
por: Hogan, Catherine A., et al.
Publicado: (2021) -
CheXaid: deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV
por: Rajpurkar, Pranav, et al.
Publicado: (2020)