Cargando…
Auto-annotating sleep stages based on polysomnographic data
Sleep disorders affect the quality of life, and the clinical diagnosis of sleep disorders is a time-consuming and tedious process requiring recording and annotating polysomnographic records. In this work, we developed an auto-annotation algorithm based on polysomnographic records and a deep learning...
Autores principales: | Zhang, Hanrui, Wang, Xueqing, Li, Hongyang, Mehendale, Soham, Guan, Yuanfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767308/ https://www.ncbi.nlm.nih.gov/pubmed/35079710 http://dx.doi.org/10.1016/j.patter.2021.100371 |
Ejemplares similares
-
Seasonality of human sleep: Polysomnographic data of a neuropsychiatric sleep clinic
por: Seidler, Aileen, et al.
Publicado: (2023) -
Machine learning for artemisinin resistance in malaria treatment across in vivo-in vitro platforms
por: Zhang, Hanrui, et al.
Publicado: (2022) -
Polysomnographic Sleep Dysregulation in Cocaine Dependence
por: Valladares, Edwin M., et al.
Publicado: (2007) -
DeepSleep convolutional neural network allows accurate and fast detection of sleep arousal
por: Li, Hongyang, et al.
Publicado: (2021) -
Sleep in disorders of consciousness: behavioral and polysomnographic recording
por: Mertel, Isabella, et al.
Publicado: (2020)