Cargando…
Ubiquitous Knockdown of Mettl3 using TRiP.GL01126 Results in Spermatid Mislocalization During Drosophila Spermatogenesis
METTL3, the enzyme that catalyzes the m(6)A RNA modification in Drosophila is highly conserved and essential in various eukaryotic organisms. Mettl3 and its homologs have been linked to biological processes such as gametogenesis. We focused on characterizing the role of METTL3 in Drosophila spermato...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Caltech Library
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767421/ https://www.ncbi.nlm.nih.gov/pubmed/35071998 http://dx.doi.org/10.17912/micropub.biology.000511 |
Sumario: | METTL3, the enzyme that catalyzes the m(6)A RNA modification in Drosophila is highly conserved and essential in various eukaryotic organisms. Mettl3 and its homologs have been linked to biological processes such as gametogenesis. We focused on characterizing the role of METTL3 in Drosophila spermatogenesis. We used the Gal4-UAS system to ubiquitously knockdown Mettl3 in both somatic cyst cells and germline cells. Using immunostaining and confocal microscopy, we found spermatid bundles mislocalize in testes that contain the morphologically abnormal swollen apical tip. Our result suggests Mettl3 knockdown using TRiP.GL01126 results in spermatogenesis aberrations. |
---|