Cargando…
Phenotypic heterogeneity in persisters: a novel ‘hunker’ theory of persistence
Persistence has been linked to treatment failure since its discovery over 70 years ago and understanding formation, nature and survival of this key antibiotic refractory subpopulation is crucial to enhancing treatment success and combatting the threat of antimicrobial resistance (AMR). The term ‘per...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767447/ https://www.ncbi.nlm.nih.gov/pubmed/34355746 http://dx.doi.org/10.1093/femsre/fuab042 |
_version_ | 1784634739966083072 |
---|---|
author | Urbaniec, J Xu, Ye Hu, Y Hingley-Wilson, S McFadden, J |
author_facet | Urbaniec, J Xu, Ye Hu, Y Hingley-Wilson, S McFadden, J |
author_sort | Urbaniec, J |
collection | PubMed |
description | Persistence has been linked to treatment failure since its discovery over 70 years ago and understanding formation, nature and survival of this key antibiotic refractory subpopulation is crucial to enhancing treatment success and combatting the threat of antimicrobial resistance (AMR). The term ‘persistence’ is often used interchangeably with other terms such as tolerance or dormancy. In this review we focus on ‘antibiotic persistence’ which we broadly define as a feature of a subpopulation of bacterial cells that possesses the non-heritable character of surviving exposure to one or more antibiotics; and persisters as cells that possess this characteristic. We discuss novel molecular mechanisms involved in persister cell formation, as well as environmental factors which can contribute to increased antibiotic persistence in vivo, highlighting recent developments advanced by single-cell studies. We also aim to provide a comprehensive model of persistence, the ‘hunker’ theory which is grounded in intrinsic heterogeneity of bacterial populations and a myriad of ‘hunkering down’ mechanisms which can contribute to antibiotic survival of the persister subpopulation. Finally, we discuss antibiotic persistence as a ‘stepping-stone’ to AMR and stress the urgent need to develop effective anti-persister treatment regimes to treat this highly clinically relevant bacterial sub-population. |
format | Online Article Text |
id | pubmed-8767447 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-87674472022-01-19 Phenotypic heterogeneity in persisters: a novel ‘hunker’ theory of persistence Urbaniec, J Xu, Ye Hu, Y Hingley-Wilson, S McFadden, J FEMS Microbiol Rev Review Article Persistence has been linked to treatment failure since its discovery over 70 years ago and understanding formation, nature and survival of this key antibiotic refractory subpopulation is crucial to enhancing treatment success and combatting the threat of antimicrobial resistance (AMR). The term ‘persistence’ is often used interchangeably with other terms such as tolerance or dormancy. In this review we focus on ‘antibiotic persistence’ which we broadly define as a feature of a subpopulation of bacterial cells that possesses the non-heritable character of surviving exposure to one or more antibiotics; and persisters as cells that possess this characteristic. We discuss novel molecular mechanisms involved in persister cell formation, as well as environmental factors which can contribute to increased antibiotic persistence in vivo, highlighting recent developments advanced by single-cell studies. We also aim to provide a comprehensive model of persistence, the ‘hunker’ theory which is grounded in intrinsic heterogeneity of bacterial populations and a myriad of ‘hunkering down’ mechanisms which can contribute to antibiotic survival of the persister subpopulation. Finally, we discuss antibiotic persistence as a ‘stepping-stone’ to AMR and stress the urgent need to develop effective anti-persister treatment regimes to treat this highly clinically relevant bacterial sub-population. Oxford University Press 2021-08-06 /pmc/articles/PMC8767447/ /pubmed/34355746 http://dx.doi.org/10.1093/femsre/fuab042 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of FEMS. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Urbaniec, J Xu, Ye Hu, Y Hingley-Wilson, S McFadden, J Phenotypic heterogeneity in persisters: a novel ‘hunker’ theory of persistence |
title | Phenotypic heterogeneity in persisters: a novel ‘hunker’ theory of persistence |
title_full | Phenotypic heterogeneity in persisters: a novel ‘hunker’ theory of persistence |
title_fullStr | Phenotypic heterogeneity in persisters: a novel ‘hunker’ theory of persistence |
title_full_unstemmed | Phenotypic heterogeneity in persisters: a novel ‘hunker’ theory of persistence |
title_short | Phenotypic heterogeneity in persisters: a novel ‘hunker’ theory of persistence |
title_sort | phenotypic heterogeneity in persisters: a novel ‘hunker’ theory of persistence |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767447/ https://www.ncbi.nlm.nih.gov/pubmed/34355746 http://dx.doi.org/10.1093/femsre/fuab042 |
work_keys_str_mv | AT urbaniecj phenotypicheterogeneityinpersistersanovelhunkertheoryofpersistence AT xuye phenotypicheterogeneityinpersistersanovelhunkertheoryofpersistence AT huy phenotypicheterogeneityinpersistersanovelhunkertheoryofpersistence AT hingleywilsons phenotypicheterogeneityinpersistersanovelhunkertheoryofpersistence AT mcfaddenj phenotypicheterogeneityinpersistersanovelhunkertheoryofpersistence |