Cargando…

Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association ana...

Descripción completa

Detalles Bibliográficos
Autores principales: Restuadi, Restuadi, Steyn, Frederik J., Kabashi, Edor, Ngo, Shyuan T., Cheng, Fei-Fei, Nabais, Marta F., Thompson, Mike J., Qi, Ting, Wu, Yang, Henders, Anjali K., Wallace, Leanne, Bye, Chris R., Turner, Bradley J., Ziser, Laura, Mathers, Susan, McCombe, Pamela A., Needham, Merrilee, Schultz, David, Kiernan, Matthew C., van Rheenen, Wouter, van den Berg, Leonard H., Veldink, Jan H., Ophoff, Roel, Gusev, Alexander, Zaitlen, Noah, McRae, Allan F., Henderson, Robert D., Wray, Naomi R., Giacomotto, Jean, Garton, Fleur C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767698/
https://www.ncbi.nlm.nih.gov/pubmed/35042540
http://dx.doi.org/10.1186/s13073-021-01006-6
_version_ 1784634788290756608
author Restuadi, Restuadi
Steyn, Frederik J.
Kabashi, Edor
Ngo, Shyuan T.
Cheng, Fei-Fei
Nabais, Marta F.
Thompson, Mike J.
Qi, Ting
Wu, Yang
Henders, Anjali K.
Wallace, Leanne
Bye, Chris R.
Turner, Bradley J.
Ziser, Laura
Mathers, Susan
McCombe, Pamela A.
Needham, Merrilee
Schultz, David
Kiernan, Matthew C.
van Rheenen, Wouter
van den Berg, Leonard H.
Veldink, Jan H.
Ophoff, Roel
Gusev, Alexander
Zaitlen, Noah
McRae, Allan F.
Henderson, Robert D.
Wray, Naomi R.
Giacomotto, Jean
Garton, Fleur C.
author_facet Restuadi, Restuadi
Steyn, Frederik J.
Kabashi, Edor
Ngo, Shyuan T.
Cheng, Fei-Fei
Nabais, Marta F.
Thompson, Mike J.
Qi, Ting
Wu, Yang
Henders, Anjali K.
Wallace, Leanne
Bye, Chris R.
Turner, Bradley J.
Ziser, Laura
Mathers, Susan
McCombe, Pamela A.
Needham, Merrilee
Schultz, David
Kiernan, Matthew C.
van Rheenen, Wouter
van den Berg, Leonard H.
Veldink, Jan H.
Ophoff, Roel
Gusev, Alexander
Zaitlen, Noah
McRae, Allan F.
Henderson, Robert D.
Wray, Naomi R.
Giacomotto, Jean
Garton, Fleur C.
author_sort Restuadi, Restuadi
collection PubMed
description BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this. METHODS: The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (N(cases) = 20,806, N(controls) = 59,804) with ‘omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray N(total) = 942, protein N(total) = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO). RESULTS: SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10(−6)), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 × 10(−3), adjusted R(2) = 0.042, B(effect) = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control, swim distance = 112 ± 28 mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression. CONCLUSIONS: These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-021-01006-6.
format Online
Article
Text
id pubmed-8767698
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-87676982022-01-19 Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1 Restuadi, Restuadi Steyn, Frederik J. Kabashi, Edor Ngo, Shyuan T. Cheng, Fei-Fei Nabais, Marta F. Thompson, Mike J. Qi, Ting Wu, Yang Henders, Anjali K. Wallace, Leanne Bye, Chris R. Turner, Bradley J. Ziser, Laura Mathers, Susan McCombe, Pamela A. Needham, Merrilee Schultz, David Kiernan, Matthew C. van Rheenen, Wouter van den Berg, Leonard H. Veldink, Jan H. Ophoff, Roel Gusev, Alexander Zaitlen, Noah McRae, Allan F. Henderson, Robert D. Wray, Naomi R. Giacomotto, Jean Garton, Fleur C. Genome Med Research BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this. METHODS: The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (N(cases) = 20,806, N(controls) = 59,804) with ‘omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray N(total) = 942, protein N(total) = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO). RESULTS: SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10(−6)), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 × 10(−3), adjusted R(2) = 0.042, B(effect) = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control, swim distance = 112 ± 28 mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression. CONCLUSIONS: These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-021-01006-6. BioMed Central 2022-01-19 /pmc/articles/PMC8767698/ /pubmed/35042540 http://dx.doi.org/10.1186/s13073-021-01006-6 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Restuadi, Restuadi
Steyn, Frederik J.
Kabashi, Edor
Ngo, Shyuan T.
Cheng, Fei-Fei
Nabais, Marta F.
Thompson, Mike J.
Qi, Ting
Wu, Yang
Henders, Anjali K.
Wallace, Leanne
Bye, Chris R.
Turner, Bradley J.
Ziser, Laura
Mathers, Susan
McCombe, Pamela A.
Needham, Merrilee
Schultz, David
Kiernan, Matthew C.
van Rheenen, Wouter
van den Berg, Leonard H.
Veldink, Jan H.
Ophoff, Roel
Gusev, Alexander
Zaitlen, Noah
McRae, Allan F.
Henderson, Robert D.
Wray, Naomi R.
Giacomotto, Jean
Garton, Fleur C.
Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1
title Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1
title_full Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1
title_fullStr Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1
title_full_unstemmed Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1
title_short Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1
title_sort functional characterisation of the amyotrophic lateral sclerosis risk locus gpx3/tnip1
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767698/
https://www.ncbi.nlm.nih.gov/pubmed/35042540
http://dx.doi.org/10.1186/s13073-021-01006-6
work_keys_str_mv AT restuadirestuadi functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT steynfrederikj functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT kabashiedor functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT ngoshyuant functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT chengfeifei functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT nabaismartaf functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT thompsonmikej functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT qiting functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT wuyang functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT hendersanjalik functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT wallaceleanne functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT byechrisr functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT turnerbradleyj functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT ziserlaura functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT matherssusan functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT mccombepamelaa functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT needhammerrilee functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT schultzdavid functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT kiernanmatthewc functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT vanrheenenwouter functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT vandenbergleonardh functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT veldinkjanh functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT ophoffroel functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT gusevalexander functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT zaitlennoah functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT mcraeallanf functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT hendersonrobertd functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT wraynaomir functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT giacomottojean functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1
AT gartonfleurc functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1