Cargando…
Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1
BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association ana...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767698/ https://www.ncbi.nlm.nih.gov/pubmed/35042540 http://dx.doi.org/10.1186/s13073-021-01006-6 |
_version_ | 1784634788290756608 |
---|---|
author | Restuadi, Restuadi Steyn, Frederik J. Kabashi, Edor Ngo, Shyuan T. Cheng, Fei-Fei Nabais, Marta F. Thompson, Mike J. Qi, Ting Wu, Yang Henders, Anjali K. Wallace, Leanne Bye, Chris R. Turner, Bradley J. Ziser, Laura Mathers, Susan McCombe, Pamela A. Needham, Merrilee Schultz, David Kiernan, Matthew C. van Rheenen, Wouter van den Berg, Leonard H. Veldink, Jan H. Ophoff, Roel Gusev, Alexander Zaitlen, Noah McRae, Allan F. Henderson, Robert D. Wray, Naomi R. Giacomotto, Jean Garton, Fleur C. |
author_facet | Restuadi, Restuadi Steyn, Frederik J. Kabashi, Edor Ngo, Shyuan T. Cheng, Fei-Fei Nabais, Marta F. Thompson, Mike J. Qi, Ting Wu, Yang Henders, Anjali K. Wallace, Leanne Bye, Chris R. Turner, Bradley J. Ziser, Laura Mathers, Susan McCombe, Pamela A. Needham, Merrilee Schultz, David Kiernan, Matthew C. van Rheenen, Wouter van den Berg, Leonard H. Veldink, Jan H. Ophoff, Roel Gusev, Alexander Zaitlen, Noah McRae, Allan F. Henderson, Robert D. Wray, Naomi R. Giacomotto, Jean Garton, Fleur C. |
author_sort | Restuadi, Restuadi |
collection | PubMed |
description | BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this. METHODS: The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (N(cases) = 20,806, N(controls) = 59,804) with ‘omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray N(total) = 942, protein N(total) = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO). RESULTS: SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10(−6)), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 × 10(−3), adjusted R(2) = 0.042, B(effect) = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control, swim distance = 112 ± 28 mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression. CONCLUSIONS: These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-021-01006-6. |
format | Online Article Text |
id | pubmed-8767698 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-87676982022-01-19 Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1 Restuadi, Restuadi Steyn, Frederik J. Kabashi, Edor Ngo, Shyuan T. Cheng, Fei-Fei Nabais, Marta F. Thompson, Mike J. Qi, Ting Wu, Yang Henders, Anjali K. Wallace, Leanne Bye, Chris R. Turner, Bradley J. Ziser, Laura Mathers, Susan McCombe, Pamela A. Needham, Merrilee Schultz, David Kiernan, Matthew C. van Rheenen, Wouter van den Berg, Leonard H. Veldink, Jan H. Ophoff, Roel Gusev, Alexander Zaitlen, Noah McRae, Allan F. Henderson, Robert D. Wray, Naomi R. Giacomotto, Jean Garton, Fleur C. Genome Med Research BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this. METHODS: The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (N(cases) = 20,806, N(controls) = 59,804) with ‘omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray N(total) = 942, protein N(total) = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO). RESULTS: SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10(−6)), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 × 10(−3), adjusted R(2) = 0.042, B(effect) = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control, swim distance = 112 ± 28 mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression. CONCLUSIONS: These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-021-01006-6. BioMed Central 2022-01-19 /pmc/articles/PMC8767698/ /pubmed/35042540 http://dx.doi.org/10.1186/s13073-021-01006-6 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Restuadi, Restuadi Steyn, Frederik J. Kabashi, Edor Ngo, Shyuan T. Cheng, Fei-Fei Nabais, Marta F. Thompson, Mike J. Qi, Ting Wu, Yang Henders, Anjali K. Wallace, Leanne Bye, Chris R. Turner, Bradley J. Ziser, Laura Mathers, Susan McCombe, Pamela A. Needham, Merrilee Schultz, David Kiernan, Matthew C. van Rheenen, Wouter van den Berg, Leonard H. Veldink, Jan H. Ophoff, Roel Gusev, Alexander Zaitlen, Noah McRae, Allan F. Henderson, Robert D. Wray, Naomi R. Giacomotto, Jean Garton, Fleur C. Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1 |
title | Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1 |
title_full | Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1 |
title_fullStr | Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1 |
title_full_unstemmed | Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1 |
title_short | Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1 |
title_sort | functional characterisation of the amyotrophic lateral sclerosis risk locus gpx3/tnip1 |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767698/ https://www.ncbi.nlm.nih.gov/pubmed/35042540 http://dx.doi.org/10.1186/s13073-021-01006-6 |
work_keys_str_mv | AT restuadirestuadi functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT steynfrederikj functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT kabashiedor functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT ngoshyuant functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT chengfeifei functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT nabaismartaf functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT thompsonmikej functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT qiting functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT wuyang functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT hendersanjalik functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT wallaceleanne functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT byechrisr functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT turnerbradleyj functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT ziserlaura functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT matherssusan functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT mccombepamelaa functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT needhammerrilee functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT schultzdavid functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT kiernanmatthewc functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT vanrheenenwouter functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT vandenbergleonardh functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT veldinkjanh functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT ophoffroel functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT gusevalexander functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT zaitlennoah functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT mcraeallanf functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT hendersonrobertd functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT wraynaomir functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT giacomottojean functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 AT gartonfleurc functionalcharacterisationoftheamyotrophiclateralsclerosisrisklocusgpx3tnip1 |