Cargando…

Search of antimicrobial lactic acid bacteria from Salmonella-negative dogs

BACKGROUND: Salmonellosis is one of the most important food-borne zoonotic disease affecting both animals and humans. The objective of the present study was to identify gastrointestinal (GI) lactic acid bacteria (LAB) of canine-origin from Salmonella-negative dogs’ faeces able to inhibit monophasic...

Descripción completa

Detalles Bibliográficos
Autores principales: Jimenez-Trigos, Estrella, Toquet, Marion, Barba, Marta, Gómez-Martín, Ángel, Quereda, Juan J., Bataller, Esther
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767738/
https://www.ncbi.nlm.nih.gov/pubmed/35042502
http://dx.doi.org/10.1186/s12917-021-03070-x
Descripción
Sumario:BACKGROUND: Salmonellosis is one of the most important food-borne zoonotic disease affecting both animals and humans. The objective of the present study was to identify gastrointestinal (GI) lactic acid bacteria (LAB) of canine-origin from Salmonella-negative dogs’ faeces able to inhibit monophasic Salmonella Typhimurium previously isolated from dogs’ faeces, in order to be used as a potential probiotic in pet nutrition. RESULTS: Accordingly, 37 LAB were isolated from Salmonella-negative dogs’ faeces and tested against monophasic S. Typhimurium using the spot on lawn method out of which 7 strains showed an inhibition halo higher than 2.5 cm. These 7 strains were also tested with the co-culture method and one showed the greatest inhibition value (p < 0.05). Subsequently, the isolate was identified through 16S rRNA sequencing and sequence homology and designated as Ligilactobacillus salivarius (L. salivarius). LAB from Salmonella-positive dogs were also identified and none was the selected strain. Finally, to identify the mechanism of inhibition of L. salivarius, the supernatant was analyzed, and a dose response effect was observed. CONCLUSIONS: It is concluded that the canine-origin L. salivarius, could possess some in vitro functional attributes of a candidate probiotic and could prevent monophasic S. Typhimurium colonization or inhibit its activity if the infection occurs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12917-021-03070-x.