Cargando…

Recombinantly Expressed Chimeric Fibers Demonstrate Discrete Type-Specific Neutralizing Epitopes in the Fowl Aviadenovirus E (FAdV-E) Fiber, Promoting the Optimization of FAdV Fiber Subunit Vaccines towards Cross-Protection in vivo

Vaccines against inclusion body hepatitis in chickens are complicated by the involvement of antigenically diverse fowl adenovirus types. Though immunization with fiber protein confers robust protection, type specificity of fiber antibodies is an obstacle for the desired broad coverage. In this study...

Descripción completa

Detalles Bibliográficos
Autores principales: Schachner, Anna, De Luca, Carlotta, Heidl, Sarah, Hess, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8768839/
https://www.ncbi.nlm.nih.gov/pubmed/35044206
http://dx.doi.org/10.1128/spectrum.02123-21
_version_ 1784635007899271168
author Schachner, Anna
De Luca, Carlotta
Heidl, Sarah
Hess, Michael
author_facet Schachner, Anna
De Luca, Carlotta
Heidl, Sarah
Hess, Michael
author_sort Schachner, Anna
collection PubMed
description Vaccines against inclusion body hepatitis in chickens are complicated by the involvement of antigenically diverse fowl adenovirus types. Though immunization with fiber protein confers robust protection, type specificity of fiber antibodies is an obstacle for the desired broad coverage. In this study, we utilized information on multiple linear epitopes predicted in the Fowl Aviadenovirus E (FAdV-E) fiber head (knob) to develop chimeric fibers with an exchange between two serotypes’ sequences, each containing proposed epitopes. Two consecutive segments pertaining to amino acid positions 1 to 441 and 442 to 525/523 in the fibers of FAdV-8a and -8b, types of Fowl Aviadenovirus E that cause inclusion body hepatitis, were swapped reciprocally to result in novel chimeras, crecFib-8a/8b and crecFib-8b/8a. crecFib was indistinguishable from monospecific recombinant fibers in its eactivity with different FAdV antisera in Western blotting. However, contrary to the results for monospecific fibers, crecFib induced cross-neutralizing antibodies against both serotypes in chickens. This demonstrates three nonidentical epitopes in the FAdV-E fiber, the conserved epitope detected in Western blotting and at least two epitopes participating in neutralization, being type specific and located opposite residue position 441-442. Furthermore, we supply conformational evidence for a site in the fiber knob with accessibility critical for neutralization. With such an extended neutralization spectrum compared to those of individual fibers, crecFib was anticipated to fulfill and even extend the mechanistic basis of fiber-mediated protection toward bivalent coverage. Accordingly, crecFib, administered as a single-antigen component, protected chickens simultaneously against challenge with FAdV-8a or -8b, demonstrated by up-to-complete resistance to clinical disease, prevention of target organ-related changes, and significant reduction of viral load. IMPORTANCE The control of inclusion body hepatitis, a disease of economic importance for chicken production worldwide, is complicated by an etiology involving multiple divergent fowl adenovirus types. The fiber protein is principally efficacious in inducing neutralizing and protective antibodies in vaccinated chickens; however, it faces limitations due to its intrinsic type specificity for neutralization. In this study, based on an in silico-guided prediction of multiple epitopes in the fowl adenovirus fiber head’s loops, we designed chimeric proteins, swapping N- and C-distal fiber portions, each containing putative epitopes, between divergent types FAdV-8a and -8b. In in vitro and in vivo studies, the chimeric fiber displayed extended properties compared to those of individual monotype-specific fibers, allowing the number, distribution, functionality, and conformational bearings of epitopes of the fowl adenovirus fiber to be characterized in more detail. Importantly, the chimeric fiber induced cross-neutralizing antibodies and protective responses in chickens against infections by both serotypes, promoting the advancement of broadly protective subunit vaccination strategies against FAdV.
format Online
Article
Text
id pubmed-8768839
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-87688392022-01-24 Recombinantly Expressed Chimeric Fibers Demonstrate Discrete Type-Specific Neutralizing Epitopes in the Fowl Aviadenovirus E (FAdV-E) Fiber, Promoting the Optimization of FAdV Fiber Subunit Vaccines towards Cross-Protection in vivo Schachner, Anna De Luca, Carlotta Heidl, Sarah Hess, Michael Microbiol Spectr Research Article Vaccines against inclusion body hepatitis in chickens are complicated by the involvement of antigenically diverse fowl adenovirus types. Though immunization with fiber protein confers robust protection, type specificity of fiber antibodies is an obstacle for the desired broad coverage. In this study, we utilized information on multiple linear epitopes predicted in the Fowl Aviadenovirus E (FAdV-E) fiber head (knob) to develop chimeric fibers with an exchange between two serotypes’ sequences, each containing proposed epitopes. Two consecutive segments pertaining to amino acid positions 1 to 441 and 442 to 525/523 in the fibers of FAdV-8a and -8b, types of Fowl Aviadenovirus E that cause inclusion body hepatitis, were swapped reciprocally to result in novel chimeras, crecFib-8a/8b and crecFib-8b/8a. crecFib was indistinguishable from monospecific recombinant fibers in its eactivity with different FAdV antisera in Western blotting. However, contrary to the results for monospecific fibers, crecFib induced cross-neutralizing antibodies against both serotypes in chickens. This demonstrates three nonidentical epitopes in the FAdV-E fiber, the conserved epitope detected in Western blotting and at least two epitopes participating in neutralization, being type specific and located opposite residue position 441-442. Furthermore, we supply conformational evidence for a site in the fiber knob with accessibility critical for neutralization. With such an extended neutralization spectrum compared to those of individual fibers, crecFib was anticipated to fulfill and even extend the mechanistic basis of fiber-mediated protection toward bivalent coverage. Accordingly, crecFib, administered as a single-antigen component, protected chickens simultaneously against challenge with FAdV-8a or -8b, demonstrated by up-to-complete resistance to clinical disease, prevention of target organ-related changes, and significant reduction of viral load. IMPORTANCE The control of inclusion body hepatitis, a disease of economic importance for chicken production worldwide, is complicated by an etiology involving multiple divergent fowl adenovirus types. The fiber protein is principally efficacious in inducing neutralizing and protective antibodies in vaccinated chickens; however, it faces limitations due to its intrinsic type specificity for neutralization. In this study, based on an in silico-guided prediction of multiple epitopes in the fowl adenovirus fiber head’s loops, we designed chimeric proteins, swapping N- and C-distal fiber portions, each containing putative epitopes, between divergent types FAdV-8a and -8b. In in vitro and in vivo studies, the chimeric fiber displayed extended properties compared to those of individual monotype-specific fibers, allowing the number, distribution, functionality, and conformational bearings of epitopes of the fowl adenovirus fiber to be characterized in more detail. Importantly, the chimeric fiber induced cross-neutralizing antibodies and protective responses in chickens against infections by both serotypes, promoting the advancement of broadly protective subunit vaccination strategies against FAdV. American Society for Microbiology 2022-01-19 /pmc/articles/PMC8768839/ /pubmed/35044206 http://dx.doi.org/10.1128/spectrum.02123-21 Text en Copyright © 2022 Schachner et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Schachner, Anna
De Luca, Carlotta
Heidl, Sarah
Hess, Michael
Recombinantly Expressed Chimeric Fibers Demonstrate Discrete Type-Specific Neutralizing Epitopes in the Fowl Aviadenovirus E (FAdV-E) Fiber, Promoting the Optimization of FAdV Fiber Subunit Vaccines towards Cross-Protection in vivo
title Recombinantly Expressed Chimeric Fibers Demonstrate Discrete Type-Specific Neutralizing Epitopes in the Fowl Aviadenovirus E (FAdV-E) Fiber, Promoting the Optimization of FAdV Fiber Subunit Vaccines towards Cross-Protection in vivo
title_full Recombinantly Expressed Chimeric Fibers Demonstrate Discrete Type-Specific Neutralizing Epitopes in the Fowl Aviadenovirus E (FAdV-E) Fiber, Promoting the Optimization of FAdV Fiber Subunit Vaccines towards Cross-Protection in vivo
title_fullStr Recombinantly Expressed Chimeric Fibers Demonstrate Discrete Type-Specific Neutralizing Epitopes in the Fowl Aviadenovirus E (FAdV-E) Fiber, Promoting the Optimization of FAdV Fiber Subunit Vaccines towards Cross-Protection in vivo
title_full_unstemmed Recombinantly Expressed Chimeric Fibers Demonstrate Discrete Type-Specific Neutralizing Epitopes in the Fowl Aviadenovirus E (FAdV-E) Fiber, Promoting the Optimization of FAdV Fiber Subunit Vaccines towards Cross-Protection in vivo
title_short Recombinantly Expressed Chimeric Fibers Demonstrate Discrete Type-Specific Neutralizing Epitopes in the Fowl Aviadenovirus E (FAdV-E) Fiber, Promoting the Optimization of FAdV Fiber Subunit Vaccines towards Cross-Protection in vivo
title_sort recombinantly expressed chimeric fibers demonstrate discrete type-specific neutralizing epitopes in the fowl aviadenovirus e (fadv-e) fiber, promoting the optimization of fadv fiber subunit vaccines towards cross-protection in vivo
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8768839/
https://www.ncbi.nlm.nih.gov/pubmed/35044206
http://dx.doi.org/10.1128/spectrum.02123-21
work_keys_str_mv AT schachneranna recombinantlyexpressedchimericfibersdemonstratediscretetypespecificneutralizingepitopesinthefowlaviadenovirusefadvefiberpromotingtheoptimizationoffadvfibersubunitvaccinestowardscrossprotectioninvivo
AT delucacarlotta recombinantlyexpressedchimericfibersdemonstratediscretetypespecificneutralizingepitopesinthefowlaviadenovirusefadvefiberpromotingtheoptimizationoffadvfibersubunitvaccinestowardscrossprotectioninvivo
AT heidlsarah recombinantlyexpressedchimericfibersdemonstratediscretetypespecificneutralizingepitopesinthefowlaviadenovirusefadvefiberpromotingtheoptimizationoffadvfibersubunitvaccinestowardscrossprotectioninvivo
AT hessmichael recombinantlyexpressedchimericfibersdemonstratediscretetypespecificneutralizingepitopesinthefowlaviadenovirusefadvefiberpromotingtheoptimizationoffadvfibersubunitvaccinestowardscrossprotectioninvivo