Cargando…
MGraphDTA: deep multiscale graph neural network for explainable drug–target binding affinity prediction
Predicting drug–target affinity (DTA) is beneficial for accelerating drug discovery. Graph neural networks (GNNs) have been widely used in DTA prediction. However, existing shallow GNNs are insufficient to capture the global structure of compounds. Besides, the interpretability of the graph-based DT...
Autores principales: | Yang, Ziduo, Zhong, Weihe, Zhao, Lu, Yu-Chian Chen, Calvin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8768884/ https://www.ncbi.nlm.nih.gov/pubmed/35173947 http://dx.doi.org/10.1039/d1sc05180f |
Ejemplares similares
-
NHGNN-DTA: a node-adaptive hybrid graph neural network for interpretable drug–target binding affinity prediction
por: He, Haohuai, et al.
Publicado: (2023) -
Learning size-adaptive molecular substructures for explainable drug–drug interaction prediction by substructure-aware graph neural network
por: Yang, Ziduo, et al.
Publicado: (2022) -
Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing
por: Zhong, Weihe, et al.
Publicado: (2023) -
GraphscoreDTA: optimized graph neural network for protein–ligand binding affinity prediction
por: Wang, Kaili, et al.
Publicado: (2023) -
DeepDTA: deep drug–target binding affinity prediction
por: Öztürk, Hakime, et al.
Publicado: (2018)