Cargando…
A Rapid, Accurate and Machine-Agnostic Segmentation and Quantification Method for CT-Based COVID-19 Diagnosis
COVID-19 has caused a global pandemic and become the most urgent threat to the entire world. Tremendous efforts and resources have been invested in developing diagnosis, prognosis and treatment strategies to combat the disease. Although nucleic acid detection has been mainly used as the gold standar...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769013/ https://www.ncbi.nlm.nih.gov/pubmed/32730214 http://dx.doi.org/10.1109/TMI.2020.3001810 |
Ejemplares similares
-
Model-Agnostic Method for Thoracic Wall Segmentation in Fetal Ultrasound Videos
por: Shozu, Kanto, et al.
Publicado: (2020) -
Predicting dengue importation into Europe, using machine learning and model-agnostic methods
por: Salami, Donald, et al.
Publicado: (2020) -
The Bacillus Agnostic
Publicado: (1911) -
Domain agnostic online semantic segmentation for multi-dimensional time series
por: Gharghabi, Shaghayegh, et al.
Publicado: (2018) -
NeuralDock: Rapid and Conformation-Agnostic Docking of Small Molecules
por: Sha, Congzhou M., et al.
Publicado: (2022)