Cargando…
COVID-19 Chest CT Image Segmentation Network by Multi-Scale Fusion and Enhancement Operations
A novel coronavirus disease 2019 (COVID-19) was detected and has spread rapidly across various countries around the world since the end of the year 2019. Computed Tomography (CT) images have been used as a crucial alternative to the time-consuming RT-PCR test. However, pure manual segmentation of CT...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769014/ https://www.ncbi.nlm.nih.gov/pubmed/36811064 http://dx.doi.org/10.1109/TBDATA.2021.3056564 |
Ejemplares similares
-
MFEAFN: Multi-scale feature enhanced adaptive fusion network for image semantic segmentation
por: Li, Shusheng, et al.
Publicado: (2022) -
Multi-Scale Mixed Attention Network for CT and MRI Image Fusion
por: Liu, Yang, et al.
Publicado: (2022) -
Fully feature fusion based neural network for COVID-19 lesion segmentation in CT images()
por: Li, Wei, et al.
Publicado: (2023) -
Dynamic hierarchical multi-scale fusion network with axial MLP for medical image segmentation
por: Cheng, Zhikun, et al.
Publicado: (2023) -
MSD-Net: Multi-Scale Discriminative Network for COVID-19 Lung Infection Segmentation on CT
Publicado: (2020)