Cargando…
Toward a Universal Measure of Facial Difference Using Two Novel Machine Learning Models
A sensitive, objective, and universally accepted method of measuring facial deformity does not currently exist. Two distinct machine learning methods are described here that produce numerical scores reflecting the level of deformity of a wide variety of facial conditions. METHODS: The first proposed...
Autores principales: | Takiddin, Abdulrahman, Shaqfeh, Mohammad, Boyaci, Osman, Serpedin, Erchin, Stotland, Mitchell A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769118/ https://www.ncbi.nlm.nih.gov/pubmed/35070595 http://dx.doi.org/10.1097/GOX.0000000000004034 |
Ejemplares similares
-
Personalized quantification of facial normality: a machine learning approach
por: Boyaci, Osman, et al.
Publicado: (2020) -
Unsupervised anomaly appraisal of cleft faces using a StyleGAN2-based model adaptation technique
por: Hayajneh, Abdullah, et al.
Publicado: (2023) -
Machine Learning Improves Functional Upper Extremity Use Capture in Distal Radius Fracture Patients
por: Sequeira, Sean B., et al.
Publicado: (2022) -
Deep learning for ECG Arrhythmia detection and classification: an overview of progress for period 2017–2023
por: Ansari, Yaqoob, et al.
Publicado: (2023) -
Review of General Algorithmic Features for Genome Assemblers for Next Generation Sequencers
por: Wajid, Bilal, et al.
Publicado: (2012)