Cargando…
Predicting risk for trauma patients using static and dynamic information from the MIMIC III database
Risk quantification algorithms in the ICU can provide (1) an early alert to the clinician that a patient is at extreme risk and (2) help manage limited resources efficiently or remotely. With electronic health records, large data sets allow the training of predictive models to quantify patient risk....
Autores principales: | Tsiklidis, Evan J., Sinno, Talid, Diamond, Scott L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769353/ https://www.ncbi.nlm.nih.gov/pubmed/35045100 http://dx.doi.org/10.1371/journal.pone.0262523 |
Ejemplares similares
-
Using the National Trauma Data Bank (NTDB) and machine learning to predict trauma patient mortality at admission
por: Tsiklidis, Evan J., et al.
Publicado: (2020) -
A three-dimensional multiscale model for the prediction of thrombus growth under flow with single-platelet resolution
por: Shankar, Kaushik N., et al.
Publicado: (2022) -
Multiscale simulation of thrombus growth and vessel occlusion triggered by collagen/tissue factor using a data-driven model of combinatorial platelet signalling
por: Lu, Yichen, et al.
Publicado: (2017) -
Nomogram to predict the risk of acute kidney injury in patients with diabetic ketoacidosis: an analysis of the MIMIC-III database
por: Fan, Tingting, et al.
Publicado: (2021) -
Machine Learning Prediction Models for Mechanically Ventilated Patients: Analyses of the MIMIC-III Database
por: Zhu, Yibing, et al.
Publicado: (2021)