Cargando…

Cerebral Hyperperfusion and Concomitant Reversible Lesion at the Splenium after Direct Revascularization Surgery for Adult Moyamoya Disease: Possible Involvement of MERS and Watershed Shift Phenomenon

Superficial temporal artery (STA)–middle cerebral artery (MCA) bypass is the standard surgical treatment for moyamoya disease (MMD). Local cerebral hyperperfusion (CHP) is one of the potential complications, which could enhance intrinsic inflammation and oxidative stress in MMD patients and accompan...

Descripción completa

Detalles Bibliográficos
Autores principales: TASHIRO, Ryosuke, FUJIMURA, Miki, NISHIZAWA, Taketo, SAITO, Atsushi, TOMINAGA, Teiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Japan Neurosurgical Society 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769435/
https://www.ncbi.nlm.nih.gov/pubmed/35079503
http://dx.doi.org/10.2176/nmccrj.cr.2020-0337
Descripción
Sumario:Superficial temporal artery (STA)–middle cerebral artery (MCA) bypass is the standard surgical treatment for moyamoya disease (MMD). Local cerebral hyperperfusion (CHP) is one of the potential complications, which could enhance intrinsic inflammation and oxidative stress in MMD patients and accompany concomitant watershed shift (WS) phenomenon, defined as the paradoxical decrease in the cerebral blood flow (CBF) near the site of CHP. However, CHP and simultaneous remote reversible lesion at the splenium have never been reported. A 22-year-old man with ischemic-onset MMD underwent left STA–MCA bypass. Although asymptomatic, local CHP and a paradoxical CBF decrease at the splenium were evident on N-isopropyl-p-[(123)I] iodoamphetamine single-photon emission computed tomography 1 day after surgery. The patient was maintained under strict blood pressure control, but he subsequently developed transient delirium 4 days after surgery. MRI revealed a high-signal-intensity lesion with a low apparent diffusion coefficient at the splenium. After continued intensive management, the splenial lesion disappeared 14 days after surgery. The patient was discharged without neurological deficits. Catheter angiography 2 months later confirmed marked regression of posterior-to-anterior collaterals via the posterior pericallosal artery, suggesting dynamic watershed shift between blood flow supplies from the posterior and anterior circulation. Mild encephalitis/encephalopathy with a reversible splenial lesion could explain the pathophysiology of the postoperative splenial lesion in this case, which is associated with generation of oxidative stress, enhanced inflammation, and metabolic abnormalities. Rapid postoperative hemodynamic changes, including local CHP and concomitant WS phenomenon, might participate in the formation of the splenial lesion.