Cargando…
Inverse design of soft materials via a deep learning–based evolutionary strategy
Colloidal self-assembly—the spontaneous organization of colloids into ordered structures—has been considered key to produce next-generation materials. However, the present-day staggering variety of colloidal building blocks and the limitless number of thermodynamic conditions make a systematic explo...
Autores principales: | Coli, Gabriele M., Boattini, Emanuele, Filion, Laura, Dijkstra, Marjolein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769546/ https://www.ncbi.nlm.nih.gov/pubmed/35044828 http://dx.doi.org/10.1126/sciadv.abj6731 |
Ejemplares similares
-
Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices
por: Zheng, Xiaoyang, et al.
Publicado: (2023) -
Classification of properties and their relation to chemical bonding: Essential steps toward the inverse design of functional materials
por: Schön, Carl-Friedrich, et al.
Publicado: (2022) -
Inversely engineered biomimetic flexible network scaffolds for soft tissue regeneration
por: Cao, Shunze, et al.
Publicado: (2023) -
Evolutionary Inverse Material Identification: Bespoke Characterization of Soft Materials Using a Metaheuristic Algorithm
por: Di Lecce, Michele, et al.
Publicado: (2022) -
An
Artificial Neural Network Reveals the Nucleation
Mechanism of a Binary Colloidal AB(13) Crystal
por: Coli, Gabriele M., et al.
Publicado: (2021)