Cargando…

A cross-study analysis of drug response prediction in cancer cell lines

To enable personalized cancer treatment, machine learning models have been developed to predict drug response as a function of tumor and drug features. However, most algorithm development efforts have relied on cross-validation within a single study to assess model accuracy. While an essential first...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Fangfang, Allen, Jonathan, Balaprakash, Prasanna, Brettin, Thomas, Garcia-Cardona, Cristina, Clyde, Austin, Cohn, Judith, Doroshow, James, Duan, Xiaotian, Dubinkina, Veronika, Evrard, Yvonne, Fan, Ya Ju, Gans, Jason, He, Stewart, Lu, Pinyi, Maslov, Sergei, Partin, Alexander, Shukla, Maulik, Stahlberg, Eric, Wozniak, Justin M, Yoo, Hyunseung, Zaki, George, Zhu, Yitan, Stevens, Rick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769697/
https://www.ncbi.nlm.nih.gov/pubmed/34524425
http://dx.doi.org/10.1093/bib/bbab356
_version_ 1784635207357300736
author Xia, Fangfang
Allen, Jonathan
Balaprakash, Prasanna
Brettin, Thomas
Garcia-Cardona, Cristina
Clyde, Austin
Cohn, Judith
Doroshow, James
Duan, Xiaotian
Dubinkina, Veronika
Evrard, Yvonne
Fan, Ya Ju
Gans, Jason
He, Stewart
Lu, Pinyi
Maslov, Sergei
Partin, Alexander
Shukla, Maulik
Stahlberg, Eric
Wozniak, Justin M
Yoo, Hyunseung
Zaki, George
Zhu, Yitan
Stevens, Rick
author_facet Xia, Fangfang
Allen, Jonathan
Balaprakash, Prasanna
Brettin, Thomas
Garcia-Cardona, Cristina
Clyde, Austin
Cohn, Judith
Doroshow, James
Duan, Xiaotian
Dubinkina, Veronika
Evrard, Yvonne
Fan, Ya Ju
Gans, Jason
He, Stewart
Lu, Pinyi
Maslov, Sergei
Partin, Alexander
Shukla, Maulik
Stahlberg, Eric
Wozniak, Justin M
Yoo, Hyunseung
Zaki, George
Zhu, Yitan
Stevens, Rick
author_sort Xia, Fangfang
collection PubMed
description To enable personalized cancer treatment, machine learning models have been developed to predict drug response as a function of tumor and drug features. However, most algorithm development efforts have relied on cross-validation within a single study to assess model accuracy. While an essential first step, cross-validation within a biological data set typically provides an overly optimistic estimate of the prediction performance on independent test sets. To provide a more rigorous assessment of model generalizability between different studies, we use machine learning to analyze five publicly available cell line-based data sets: National Cancer Institute 60, ancer Therapeutics Response Portal (CTRP), Genomics of Drug Sensitivity in Cancer, Cancer Cell Line Encyclopedia and Genentech Cell Line Screening Initiative (gCSI). Based on observed experimental variability across studies, we explore estimates of prediction upper bounds. We report performance results of a variety of machine learning models, with a multitasking deep neural network achieving the best cross-study generalizability. By multiple measures, models trained on CTRP yield the most accurate predictions on the remaining testing data, and gCSI is the most predictable among the cell line data sets included in this study. With these experiments and further simulations on partial data, two lessons emerge: (1) differences in viability assays can limit model generalizability across studies and (2) drug diversity, more than tumor diversity, is crucial for raising model generalizability in preclinical screening.
format Online
Article
Text
id pubmed-8769697
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-87696972022-01-20 A cross-study analysis of drug response prediction in cancer cell lines Xia, Fangfang Allen, Jonathan Balaprakash, Prasanna Brettin, Thomas Garcia-Cardona, Cristina Clyde, Austin Cohn, Judith Doroshow, James Duan, Xiaotian Dubinkina, Veronika Evrard, Yvonne Fan, Ya Ju Gans, Jason He, Stewart Lu, Pinyi Maslov, Sergei Partin, Alexander Shukla, Maulik Stahlberg, Eric Wozniak, Justin M Yoo, Hyunseung Zaki, George Zhu, Yitan Stevens, Rick Brief Bioinform Review To enable personalized cancer treatment, machine learning models have been developed to predict drug response as a function of tumor and drug features. However, most algorithm development efforts have relied on cross-validation within a single study to assess model accuracy. While an essential first step, cross-validation within a biological data set typically provides an overly optimistic estimate of the prediction performance on independent test sets. To provide a more rigorous assessment of model generalizability between different studies, we use machine learning to analyze five publicly available cell line-based data sets: National Cancer Institute 60, ancer Therapeutics Response Portal (CTRP), Genomics of Drug Sensitivity in Cancer, Cancer Cell Line Encyclopedia and Genentech Cell Line Screening Initiative (gCSI). Based on observed experimental variability across studies, we explore estimates of prediction upper bounds. We report performance results of a variety of machine learning models, with a multitasking deep neural network achieving the best cross-study generalizability. By multiple measures, models trained on CTRP yield the most accurate predictions on the remaining testing data, and gCSI is the most predictable among the cell line data sets included in this study. With these experiments and further simulations on partial data, two lessons emerge: (1) differences in viability assays can limit model generalizability across studies and (2) drug diversity, more than tumor diversity, is crucial for raising model generalizability in preclinical screening. Oxford University Press 2021-09-14 /pmc/articles/PMC8769697/ /pubmed/34524425 http://dx.doi.org/10.1093/bib/bbab356 Text en © The Author(s) 2021. Published by Oxford University Press. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Review
Xia, Fangfang
Allen, Jonathan
Balaprakash, Prasanna
Brettin, Thomas
Garcia-Cardona, Cristina
Clyde, Austin
Cohn, Judith
Doroshow, James
Duan, Xiaotian
Dubinkina, Veronika
Evrard, Yvonne
Fan, Ya Ju
Gans, Jason
He, Stewart
Lu, Pinyi
Maslov, Sergei
Partin, Alexander
Shukla, Maulik
Stahlberg, Eric
Wozniak, Justin M
Yoo, Hyunseung
Zaki, George
Zhu, Yitan
Stevens, Rick
A cross-study analysis of drug response prediction in cancer cell lines
title A cross-study analysis of drug response prediction in cancer cell lines
title_full A cross-study analysis of drug response prediction in cancer cell lines
title_fullStr A cross-study analysis of drug response prediction in cancer cell lines
title_full_unstemmed A cross-study analysis of drug response prediction in cancer cell lines
title_short A cross-study analysis of drug response prediction in cancer cell lines
title_sort cross-study analysis of drug response prediction in cancer cell lines
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769697/
https://www.ncbi.nlm.nih.gov/pubmed/34524425
http://dx.doi.org/10.1093/bib/bbab356
work_keys_str_mv AT xiafangfang acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT allenjonathan acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT balaprakashprasanna acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT brettinthomas acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT garciacardonacristina acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT clydeaustin acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT cohnjudith acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT doroshowjames acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT duanxiaotian acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT dubinkinaveronika acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT evrardyvonne acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT fanyaju acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT gansjason acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT hestewart acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT lupinyi acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT maslovsergei acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT partinalexander acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT shuklamaulik acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT stahlbergeric acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT wozniakjustinm acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT yoohyunseung acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT zakigeorge acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT zhuyitan acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT stevensrick acrossstudyanalysisofdrugresponsepredictionincancercelllines
AT xiafangfang crossstudyanalysisofdrugresponsepredictionincancercelllines
AT allenjonathan crossstudyanalysisofdrugresponsepredictionincancercelllines
AT balaprakashprasanna crossstudyanalysisofdrugresponsepredictionincancercelllines
AT brettinthomas crossstudyanalysisofdrugresponsepredictionincancercelllines
AT garciacardonacristina crossstudyanalysisofdrugresponsepredictionincancercelllines
AT clydeaustin crossstudyanalysisofdrugresponsepredictionincancercelllines
AT cohnjudith crossstudyanalysisofdrugresponsepredictionincancercelllines
AT doroshowjames crossstudyanalysisofdrugresponsepredictionincancercelllines
AT duanxiaotian crossstudyanalysisofdrugresponsepredictionincancercelllines
AT dubinkinaveronika crossstudyanalysisofdrugresponsepredictionincancercelllines
AT evrardyvonne crossstudyanalysisofdrugresponsepredictionincancercelllines
AT fanyaju crossstudyanalysisofdrugresponsepredictionincancercelllines
AT gansjason crossstudyanalysisofdrugresponsepredictionincancercelllines
AT hestewart crossstudyanalysisofdrugresponsepredictionincancercelllines
AT lupinyi crossstudyanalysisofdrugresponsepredictionincancercelllines
AT maslovsergei crossstudyanalysisofdrugresponsepredictionincancercelllines
AT partinalexander crossstudyanalysisofdrugresponsepredictionincancercelllines
AT shuklamaulik crossstudyanalysisofdrugresponsepredictionincancercelllines
AT stahlbergeric crossstudyanalysisofdrugresponsepredictionincancercelllines
AT wozniakjustinm crossstudyanalysisofdrugresponsepredictionincancercelllines
AT yoohyunseung crossstudyanalysisofdrugresponsepredictionincancercelllines
AT zakigeorge crossstudyanalysisofdrugresponsepredictionincancercelllines
AT zhuyitan crossstudyanalysisofdrugresponsepredictionincancercelllines
AT stevensrick crossstudyanalysisofdrugresponsepredictionincancercelllines