Cargando…
A cross-study analysis of drug response prediction in cancer cell lines
To enable personalized cancer treatment, machine learning models have been developed to predict drug response as a function of tumor and drug features. However, most algorithm development efforts have relied on cross-validation within a single study to assess model accuracy. While an essential first...
Autores principales: | Xia, Fangfang, Allen, Jonathan, Balaprakash, Prasanna, Brettin, Thomas, Garcia-Cardona, Cristina, Clyde, Austin, Cohn, Judith, Doroshow, James, Duan, Xiaotian, Dubinkina, Veronika, Evrard, Yvonne, Fan, Ya Ju, Gans, Jason, He, Stewart, Lu, Pinyi, Maslov, Sergei, Partin, Alexander, Shukla, Maulik, Stahlberg, Eric, Wozniak, Justin M, Yoo, Hyunseung, Zaki, George, Zhu, Yitan, Stevens, Rick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769697/ https://www.ncbi.nlm.nih.gov/pubmed/34524425 http://dx.doi.org/10.1093/bib/bbab356 |
Ejemplares similares
-
Enhanced Co-Expression Extrapolation (COXEN) Gene Selection Method for Building Anti-Cancer Drug Response Prediction Models
por: Zhu, Yitan, et al.
Publicado: (2020) -
Ensemble transfer learning for the prediction of anti-cancer drug response
por: Zhu, Yitan, et al.
Publicado: (2020) -
Converting tabular data into images for deep learning with convolutional neural networks
por: Zhu, Yitan, et al.
Publicado: (2021) -
Publisher Correction: Converting tabular data into images for deep learning with convolutional neural networks
por: Zhu, Yitan, et al.
Publicado: (2021) -
Learning curves for drug response prediction in cancer cell lines
por: Partin, Alexander, et al.
Publicado: (2021)